Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(25): e2406788121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865267

ABSTRACT

Heritable symbionts are common among animals in nature, but the molecular mechanisms underpinning symbiont invasions of host populations have been elusive. In this study, we demonstrate the spread of Rickettsia in an invasive agricultural pest, the whitefly Bemisia tabaci Mediterranean (MED), across northeastern China from 2018 to 2023. Here, we show that the beneficial symbiont Rickettsia spreads by manipulating host hormone signals. Our analyses suggest that Rickettsia have been horizontally acquired by B. tabaci MED from another invasive whitefly B. tabaci Middle East-Asia Minor 1 during periods of coexistence. Rickettsia is transmitted maternally and horizontally from female B. tabaci MED individuals. Rickettsia infection enhances fecundity and results in female bias among whiteflies. Our findings reveal that Rickettsia infection stimulates juvenile hormone (JH) synthesis, in turn enhancing fecundity, copulation events, and the female ratio of the offspring. Consequently, Rickettsia infection results in increased whitefly fecundity and female bias by modulating the JH pathway. More female progeny facilitates the transmission of Rickettsia. This study illustrates that the spread of Rickettsia among invasive whiteflies in northeastern China is propelled by host hormone regulation. Such symbiont invasions lead to rapid physiological and molecular evolution in the host, influencing the biology and ecology of an invasive species.


Subject(s)
Fertility , Hemiptera , Rickettsia , Sex Ratio , Symbiosis , Animals , Rickettsia/physiology , Hemiptera/microbiology , Hemiptera/physiology , Female , Male , Juvenile Hormones/metabolism , China
2.
PLoS Pathog ; 17(11): e1010120, 2021 11.
Article in English | MEDLINE | ID: mdl-34843593

ABSTRACT

Horizontal gene transfer is widespread in insects bearing intracellular symbionts. Horizontally transferred genes (HTGs) are presumably involved in amino acid synthesis in sternorrhynchan insects. However, their role in insect-symbiont interactions remains largely unknown. We found symbionts Portiera, Hamiltonella and Rickettsia possess most genes involved in lysine synthesis in the whitefly Bemisia tabaci MEAM1 although their genomes are reduced. Hamiltonella maintains a nearly complete lysine synthesis pathway. In contrast, Portiera and Rickettsia require the complementation of whitefly HTGs for lysine synthesis and have lysE, encoding a lysine exporter. Furthermore, each horizontally transferred lysine gene of ten B. tabaci cryptic species shares an evolutionary origin. We demonstrated that Hamiltonella did not alter the titers of Portiera and Rickettsia or lysine gene expression of Portiera, Rickettsia and whiteflies. Hamiltonella also did not impact on lysine levels or protein localization in bacteriocytes harboring Portiera and ovaries infected with Rickettsia. Complementation with whitefly lysine synthesis HTGs rescued E. coli lysine gene knockout mutants. Silencing whitefly lysA in whiteflies harboring Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia without influencing the expression of Hamiltonella lysA. Furthermore, silencing whitefly lysA in whiteflies lacking Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia in ovarioles. Therefore, we, for the first time, demonstrated an essential amino acid lysine synthesized through HTGs is important for whitefly reproduction and fitness of both obligate and facultative symbionts, and it illustrates the mutual dependence between whitefly and its two symbionts. Collectively, this study reveals that acquisition of horizontally transferred lysine genes contributes to coadaptation and coevolution between B. tabaci and its symbionts.


Subject(s)
Evolution, Molecular , Gene Transfer, Horizontal , Halomonadaceae/physiology , Hemiptera/microbiology , Lysine/metabolism , Rickettsia/physiology , Symbiosis , Animals , Hemiptera/genetics , Hemiptera/growth & development , Lysine/genetics
3.
ISME J ; 14(12): 2923-2935, 2020 12.
Article in English | MEDLINE | ID: mdl-32690936

ABSTRACT

Symbionts can regulate animal reproduction in multiple ways, but the underlying physiological and biochemical mechanisms remain largely unknown. The presence of multiple lineages of maternally inherited, intracellular symbionts (the primary and secondary symbionts) in terrestrial arthropods is widespread in nature. However, the biological, metabolic, and evolutionary role of co-resident secondary symbionts for hosts is poorly understood. The bacterial symbionts Hamiltonella and Arsenophonus have very high prevalence in two globally important pests, the whiteflies Bemisia tabaci and Trialeurodes vaporariorum, respectively. Both symbionts coexist with the primary symbiont Portiera in the same host cell (bacteriocyte) and are maternally transmitted. We found that elimination of both Hamiltonella and Arsenophonous by antibiotic treatment reduced the percentage of female offspring in whiteflies. Microsatellite genotyping and cytogenetic analysis revealed that symbiont deficiency inhibited fertilization in whiteflies, leading to more haploid males with one maternal allele, which is consistent with distorted sex ratio in whiteflies. Quantification of essential amino acids and B vitamins in whiteflies indicated that symbiont deficiency reduced B vitamin levels, and dietary B vitamin supplementation rescued fitness of whiteflies. This study, for the first time, conclusively demonstrates that these two intracellular symbionts affect sex ratios in their whitefly hosts by regulating fertilization and supplying B vitamins. Our results reveal that both symbionts have the convergent function of regulating reproduction in phylogenetically-distant whitefly species. The 100% frequency, the inability of whiteflies to develop normally without their symbiont, and rescue with B vitamins suggests that both symbionts may be better considered co-primary symbionts.


Subject(s)
Hemiptera , Vitamin B Complex , Animals , Female , Fertilization , Male , Sex Ratio , Symbiosis
4.
Insect Sci ; 27(5): 938-946, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31268231

ABSTRACT

Whiteflies possess bacterial symbionts Candidatus Portiera aleyrodidium that are housed in specialized cells called bacteriocytes and are faithfully transmitted via the ovary to insect offspring. In one whitefly species studied previously, Bemisia tabaci MEAM1, transmission is mediated by somatic inheritance of bacteriocytes, with a single bacteriocyte transferred to each oocyte and persisting through embryogenesis to the next generation. Here, we investigate the mode of bacteriocyte transmission in two whitefly species, B. tabaci MED, the sister species of MEAM1, and the phylogenetically distant species Trialeurodes vaporariorum. Microsatellite analysis supported by microscopical studies demonstrates that B. tabaci MED bacteriocytes are genetically different from other somatic cells and persist through embryogenesis, as for MEAM1, but T. vaporariorum bacteriocytes are genetically identical to other somatic cells of the insect, likely mediated by the degradation of maternal bacteriocytes in the embryo. These two alternative modes of transmission provide a first demonstration among insect symbioses that the cellular processes underlying vertical transmission of bacterial symbionts can diversify among related host species associated with a single lineage of symbiotic bacteria.


Subject(s)
Halomonadaceae/physiology , Hemiptera/microbiology , Oocytes/microbiology , Symbiosis , Animals , Heredity
SELECTION OF CITATIONS
SEARCH DETAIL