Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Haematologica ; 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38426285

Recent genomic studies in adult and pediatric acute myeloid leukemia (AML) demonstrated recurrent in-frame tandem duplications (TD) in exon 13 of upstream binding transcription factor (UBTF). These alterations, which account for ~4.3% of AMLs in childhood and about 3% in adult AMLs under 60, are subtype-defining and associated with poor outcomes. Here, we provide a comprehensive investigation into the clinicopathological features of UBTF-TD myeloid neoplasms in childhood, including 89 unique pediatric AML and 6 myelodysplastic syndrome (MDS) cases harboring a tandem duplication in exon 13 of UBTF. We demonstrate that UBTF-TD myeloid tumors are associated with dysplastic features, low bone marrow blast infiltration, and low white blood cell count. Furthermore, using bulk and single-cell analyses, we confirm that UBTF-TD is an early and clonal event associated with a distinct transcriptional profile, whereas the acquisition of FLT3 or WT1 mutations is associated with more stem celllike programs. Lastly, we report rare duplications within exon 9 of UBTF that phenocopy exon 13 duplications, expanding the spectrum of UBTF alterations in pediatric myeloid tumors. Collectively, we comprehensively characterize pediatric AML and MDS with UBTF-TD and highlight key clinical and pathologic features that distinguish this new entity from other molecular subtypes of AML.

2.
Nat Commun ; 15(1): 482, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38228616

Molecular-glue degraders are small molecules that induce a specific interaction between an E3 ligase and a target protein, resulting in the target proteolysis. The discovery of molecular glue degraders currently relies mostly on screening approaches. Here, we describe screening of a library of cereblon (CRBN) ligands against a panel of patient-derived cancer cell lines, leading to the discovery of SJ7095, a potent degrader of CK1α, IKZF1 and IKZF3 proteins. Through a structure-informed exploration of structure activity relationship (SAR) around this small molecule we develop SJ3149, a selective and potent degrader of CK1α protein in vitro and in vivo. The structure of SJ3149 co-crystalized in complex with CK1α + CRBN + DDB1 provides a rationale for the improved degradation properties of this compound. In a panel of 115 cancer cell lines SJ3149 displays a broad antiproliferative activity profile, which shows statistically significant correlation with MDM2 inhibitor Nutlin-3a. These findings suggest potential utility of selective CK1α degraders for treatment of hematological cancers and solid tumors.


Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line , Neoplasms/drug therapy , Proteolysis , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Blood ; 143(7): 619-630, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-37890156

ABSTRACT: UBTF tandem duplications (UBTF-TDs) have recently emerged as a recurrent alteration in pediatric and adult acute myeloid leukemia (AML). UBTF-TD leukemias are characterized by a poor response to conventional chemotherapy and a transcriptional signature that mirrors NUP98-rearranged and NPM1-mutant AMLs, including HOX-gene dysregulation. However, the mechanism by which UBTF-TD drives leukemogenesis remains unknown. In this study, we investigated the genomic occupancy of UBTF-TD in transformed cord blood CD34+ cells and patient-derived xenograft models. We found that UBTF-TD protein maintained genomic occupancy at ribosomal DNA loci while also occupying genomic targets commonly dysregulated in UBTF-TD myeloid malignancies, such as the HOXA/HOXB gene clusters and MEIS1. These data suggest that UBTF-TD is a gain-of-function alteration that results in mislocalization to genomic loci dysregulated in UBTF-TD leukemias. UBTF-TD also co-occupies key genomic loci with KMT2A and menin, which are known to be key partners involved in HOX-dysregulated leukemias. Using a protein degradation system, we showed that stemness, proliferation, and transcriptional signatures are dependent on sustained UBTF-TD localization to chromatin. Finally, we demonstrate that primary cells from UBTF-TD leukemias are sensitive to the menin inhibitor SNDX-5613, resulting in markedly reduced in vitro and in vivo tumor growth, myeloid differentiation, and abrogation of the UBTF-TD leukemic expression signature. These findings provide a viable therapeutic strategy for patients with this high-risk AML subtype.


Homeodomain Proteins , Leukemia, Myeloid, Acute , Humans , Child , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Transcription Factors , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics
4.
medRxiv ; 2023 Nov 13.
Article En | MEDLINE | ID: mdl-38014207

Recent genomic studies in adult and pediatric acute myeloid leukemia (AML) demonstrated recurrent in-frame tandem duplications (TD) in exon 13 of upstream binding transcription factor (UBTF). These alterations, which account for ~4.3% of AMLs in childhood and up to 3% in adult AMLs under 60, are subtype-defining and associated with poor outcomes. Here, we provide a comprehensive investigation into the clinicopathological features of UBTF-TD myeloid neoplasms in childhood, including 89 unique pediatric AML and 6 myelodysplastic syndrome (MDS) cases harboring a tandem duplication in exon 13 of UBTF. We demonstrate that UBTF-TD myeloid tumors are associated with dysplastic features, low bone marrow blast infiltration, and low white blood cell count. Furthermore, using bulk and single-cell analyses, we confirm that UBTF-TD is an early and clonal event associated with a distinct transcriptional profile, whereas the acquisition of FLT3 or WT1 mutations is associated with more stem cell-like programs. Lastly, we report rare duplications within exon 9 of UBTF that phenocopy exon 13 duplications, expanding the spectrum of UBTF alterations in pediatric myeloid tumors. Collectively, we comprehensively characterize pediatric AML and MDS with UBTF-TD and highlight key clinical and pathologic features that distinguish this new entity from other molecular subtypes of AML.

5.
Blood Cancer Discov ; 3(3): 194-207, 2022 05 05.
Article En | MEDLINE | ID: mdl-35176137

The genetics of relapsed pediatric acute myeloid leukemia (AML) has yet to be comprehensively defined. Here, we present the spectrum of genomic alterations in 136 relapsed pediatric AMLs. We identified recurrent exon 13 tandem duplications (TD) in upstream binding transcription factor (UBTF) in 9% of relapsed AML cases. UBTF-TD AMLs commonly have normal karyotype or trisomy 8 with cooccurring WT1 mutations or FLT3-ITD but not other known oncogenic fusions. These UBTF-TD events are stable during disease progression and are present in the founding clone. In addition, we observed that UBTF-TD AMLs account for approximately 4% of all de novo pediatric AMLs, are less common in adults, and are associated with poor outcomes and MRD positivity. Expression of UBTF-TD in primary hematopoietic cells is sufficient to enhance serial clonogenic activity and to drive a similar transcriptional program to UBTF-TD AMLs. Collectively, these clinical, genomic, and functional data establish UBTF-TD as a new recurrent mutation in AML. SIGNIFICANCE: We defined the spectrum of mutations in relapsed pediatric AML and identified UBTF-TDs as a new recurrent genetic alteration. These duplications are more common in children and define a group of AMLs with intermediate-risk cytogenetic abnormalities, FLT3-ITD and WT1 alterations, and are associated with poor outcomes. See related commentary by Hasserjian and Nardi, p. 173. This article is highlighted in the In This Issue feature, p. 171.


Leukemia, Myeloid, Acute , Adult , Child , Chromosome Aberrations , Exons , Genomics , Humans , Leukemia, Myeloid, Acute/genetics , Mutation , Recurrence
6.
Nat Commun ; 13(1): 168, 2022 01 10.
Article En | MEDLINE | ID: mdl-35013323

Skeletal muscle serves fundamental roles in organismal health. Gene expression fluctuations are critical for muscle homeostasis and the response to environmental insults. Yet, little is known about post-transcriptional mechanisms regulating such fluctuations while impacting muscle proteome. Here we report genome-wide analysis of mRNA methyladenosine (m6A) dynamics of skeletal muscle hypertrophic growth following overload-induced stress. We show that increases in METTL3 (the m6A enzyme), and concomitantly m6A, control skeletal muscle size during hypertrophy; exogenous delivery of METTL3 induces skeletal muscle growth, even without external triggers. We also show that METTL3 represses activin type 2 A receptors (ACVR2A) synthesis, blunting activation of anti-hypertrophic signaling. Notably, myofiber-specific conditional genetic deletion of METTL3 caused spontaneous muscle wasting over time and abrogated overload-induced hypertrophy; a phenotype reverted by co-administration of a myostatin inhibitor. These studies identify a previously unrecognized post-transcriptional mechanism promoting the hypertrophic response of skeletal muscle via control of myostatin signaling.


Activin Receptors, Type II/genetics , Hypertrophy/genetics , Methyltransferases/genetics , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Myostatin/genetics , Activin Receptors, Type II/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Dependovirus/genetics , Dependovirus/metabolism , Gene Expression Regulation, Developmental , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Genome-Wide Association Study , Hypertrophy/metabolism , Hypertrophy/pathology , Hypertrophy/prevention & control , Male , Methyltransferases/deficiency , Mice , Muscle Development/genetics , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Myostatin/metabolism , Signal Transduction
7.
Am J Pathol ; 192(1): 56-71, 2022 01.
Article En | MEDLINE | ID: mdl-34599880

N6-methyladenosine (m6A), the most abundant internal modifier of mRNAs installed by the methyltransferase 13 (METTL3) at the (G/A)(m6A)C motif, plays a critical role in the regulation of gene expression. METTL3 is essential for embryonic development, and its dysregulation is linked to various diseases. However, the role of METTL3 in liver biology is largely unknown. In this study, METTL3 function was unraveled in mice depleted of Mettl3 in neonatal livers (Mettl3fl/fl; Alb-Cre). Liver-specific Mettl3 knockout (M3LKO) mice exhibited global decrease in m6A on polyadenylated RNAs and pathologic features associated with nonalcoholic fatty liver disease (eg, hepatocyte ballooning, ductular reaction, microsteatosis, pleomorphic nuclei, DNA damage, foci of altered hepatocytes, focal lobular and portal inflammation, and elevated serum alanine transaminase/alkaline phosphatase levels). Mettl3-depleted hepatocytes were highly proliferative, with decreased numbers of binucleate hepatocytes and increased nuclear polyploidy. M3LKO livers were characterized by reduced m6A and expression of several key metabolic transcripts regulated by circadian rhythm and decreased nuclear protein levels of the core clock transcription factors BMAL1 and CLOCK. A significant decrease in total Bmal1 and Clock mRNAs but an increase in their nuclear levels were observed in M3LKO livers, suggesting impaired nuclear export. Consistent with the phenotype, methylated (m6A) RNA immunoprecipitation coupled with sequencing and RNA sequencing revealed transcriptome-wide loss of m6A markers and alterations in abundance of mRNAs involved in metabolism in M3LKO. Collectively, METTL3 and m6A modifications are critical regulators of liver homeostasis and function.


Circadian Rhythm/genetics , Gene Expression Regulation , Hepatocytes/metabolism , Homeostasis , Liver/metabolism , Methyltransferases/metabolism , Ploidies , ARNTL Transcription Factors/metabolism , Animals , Animals, Newborn , Base Sequence , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Nucleus/metabolism , DNA Methylation/genetics , Gene Deletion , Gene Expression Profiling , Liver/pathology , Mice, Knockout , Polyadenylation , Polyploidy , Protein-Tyrosine Kinases/metabolism , Transcriptome/genetics
8.
Curr Opin Hematol ; 28(2): 73-79, 2021 03 01.
Article En | MEDLINE | ID: mdl-33492002

PURPOSE OF REVIEW: Mutations in components of the spliceosome are the most common acquired lesions in myelodysplastic syndromes (MDS) and are frequently identified in other myeloid malignancies with a high rate of progression to acute myeloid leukemia (AML) including chronic myelomonocytic leukemia and primary myelofibrosis. The only curative option for these disorders remains allogeneic stem-cell transplantation, which is associated with high morbidity and mortality in these patients. The purpose of this review is to highlight the recent therapeutic developments and strategies being pursued for clinical benefit in splicing factor mutant myeloid malignancies. RECENT FINDINGS: Cells harboring splicing factor mutations have increased aberrant splicing leading to R-loop formation and cell cycle stalling that create dependencies on Checkpoint kinase 1 (CHK1) activation and canonical splicing maintained by protein arginine methyltransferase activity. Both targeting of the spliceosome and targeting of the downstream consequences of splicing factor mutation expression show promise as selective strategies for the treatment of splicing factor-mutant myeloid malignancies. SUMMARY: An improved understanding of the therapeutic vulnerabilities in splicing factor-mutant MDS and AML has led to the development of clinical trials of small molecule inhibitors that target the spliceosome, ataxia telangectasia and Rad3 related (ATR)-CHK1 pathway, and methylation of splicing components.


Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Molecular Targeted Therapy , Mutation , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , RNA Splicing Factors/antagonists & inhibitors , RNA Splicing Factors/genetics , Animals , Biomarkers , Disease Management , Disease Susceptibility , Drug Development , Gene Expression Regulation/drug effects , Humans , Leukemia, Myeloid, Acute/diagnosis , Myelodysplastic Syndromes/diagnosis , RNA Splicing , RNA Splicing Factors/metabolism , Signal Transduction/drug effects
9.
Biology (Basel) ; 9(7)2020 Jul 08.
Article En | MEDLINE | ID: mdl-32650615

MicroRNA-122 (miR-122) has been identified as a marker of various liver injuries, including hepatitis- virus-infection-, alcoholic-, and non-alcoholic steatohepatitis (NASH)-induced liver fibrosis. Here, we report that the extracellular miR-122 from hepatic cells can be delivered to hepatic stellate cells (HSCs) to modulate their proliferation and gene expression. Our published Argonaute crosslinking immunoprecipitation (Ago-CLIP) data identified several pro-fibrotic genes, including Ctgf, as miR-122 targets in mice livers. However, treating Ctgf as a therapeutic target failed to rescue the fibrosis developed in the miR-122 knockout livers. Alternatively, we compared the published datasets of human cirrhotic livers and miR-122 KO livers, which revealed upregulation of BCL2, suggesting its potential role in regulating fibrosis. Notably, ectopic miR-122 expression inhibited BCL2 expression in human HSC (LX-2) cells). Publicly available ChIP-seq data in human hepatocellular cancer (HepG2) cells and mice livers suggested miR-122 could regulate BCL2 expression indirectly through c-MYC, which was confirmed by siRNA-mediated depletion of c-MYC in Hepatocellular Carcinoma (HCC) cell lines. Importantly, Venetoclax, a potent BCL2 inhibitor approved for the treatment of leukemia, showed promising anti-fibrotic effects in miR-122 knockout mice. Collectively, our data demonstrate that miR-122 suppresses liver fibrosis and implicates anti-fibrotic potential of Venetoclax.

10.
Mol Cancer Ther ; 19(2): 384-396, 2020 02.
Article En | MEDLINE | ID: mdl-31582534

Hepatocellular carcinoma (HCC), the most prevalent primary liver cancer, is a leading cause of cancer-related death worldwide because of rising incidence and limited therapy. Although treatment with sorafenib or lenvatinib is the standard of care in patients with advanced-stage HCC, the survival benefit from sorafenib is limited due to low response rate and drug resistance. Ibrutinib, an irreversible tyrosine kinase inhibitor (TKI) of the TEC (e.g., BTK) and ErbB (e.g., EGFR) families, is an approved treatment for B-cell malignancies. Here, we demonstrate that ibrutinib inhibits proliferation, spheroid formation, and clonogenic survival of HCC cells, including sorafenib-resistant cells. Mechanistically, ibrutinib inactivated EGFR and its downstream Akt and ERK signaling in HCC cells, and downregulated a set of critical genes involved in cell proliferation, migration, survival, and stemness, and upregulated genes promoting differentiation. Moreover, ibrutinib showed synergy with sorafenib or regorafenib, a sorafenib congener, by inducing apoptosis of HCC cells. In vivo, this TKI combination significantly inhibited HCC growth and prolonged survival of immune-deficient mice bearing human HCCLM3 xenograft tumors and immune-competent mice bearing orthotopic mouse Hepa tumors at a dose that did not exhibit systemic toxicity. In immune-competent mice, the ibrutinib-sorafenib combination reduced the numbers of BTK+ immune cells in the tumor microenvironment. Importantly, we found that the BTK+ immune cells were also enriched in the tumor microenvironment in a subset of primary human HCCs. Collectively, our findings implicate BTK signaling in hepatocarcinogenesis and support clinical trials of the sorafenib-ibrutinib combination for this deadly disease.


Adenine/analogs & derivatives , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Piperidines/pharmacology , Sorafenib/pharmacology , Adenine/administration & dosage , Adenine/pharmacology , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Drug Synergism , Female , Humans , Liver Neoplasms/pathology , Mice , Piperidines/administration & dosage , Sorafenib/administration & dosage
11.
Sci Rep ; 8(1): 9105, 2018 06 14.
Article En | MEDLINE | ID: mdl-29904144

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. Thus, a better understanding of molecular aberrations involved in HCC pathogenesis is necessary for developing effective therapy. It is well established that cancer cells metabolize energy sources differently to rapidly generate biomass. Glucose-6-phosphate-dehydrogenase (G6PD), the rate-limiting enzyme of the Pentose Phosphate Pathway (PPP), is often activated in human malignancies to generate precursors for nucleotide and lipid synthesis. Here, we determined the clinical significance of G6PD in primary human HCC by analyzing RNA-seq and clinical data in The Cancer Genome Atlas. We found that the upregulation of G6PD correlates with higher tumor grade, increased tumor recurrence, and poor patient survival. Notably, liver-specific miR-122, which is essential for metabolic homeostasis, suppresses G6PD expression by directly interacting with its 3'UTR. Luciferase reporter assay confirmed two conserved functional miR-122 binding sites located in the 3'-UTR of G6PD. Furthermore, we show that ectopic expression of miR-122 and miR-1, a known regulator of G6PD expression coordinately repress G6PD expression in HCC cells. These miRNAs also reduced G6PD activity in HepG2 cells that express relatively high activity of this enzyme. Collectively, this study provides evidence that anti-HCC efficacy of miR122 and miR-1 could be mediated, at least in part, through inhibition of PPP by suppressing the expression of G6PD.


Carcinoma, Hepatocellular/metabolism , Glucosephosphate Dehydrogenase/biosynthesis , Liver Neoplasms/metabolism , MicroRNAs/metabolism , Neoplasm Proteins/biosynthesis , RNA, Neoplasm/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Glucosephosphate Dehydrogenase/genetics , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MicroRNAs/genetics , Neoplasm Proteins/genetics , RNA, Neoplasm/genetics , Up-Regulation
12.
Mol Cancer Res ; 16(2): 256-268, 2018 02.
Article En | MEDLINE | ID: mdl-29187559

Hepatocellular carcinoma (HCC) is the most prevalent and highly aggressive liver malignancy with limited therapeutic options. Here, the therapeutic potential of zerumbone, a sesquiterpene derived from the ginger plant Zingiber zerumbet, against HCC was explored. Zerumbone inhibited proliferation and clonogenic survival of HCC cells in a dose-dependent manner by arresting cells at the G2-M phase and inducing apoptosis. To elucidate the underlying molecular mechanisms, a phosphokinase array was performed that showed significant inhibition of the PI3K/AKT/mTOR and STAT3 signaling pathways in zerumbone-treated HCC cells. Gene expression profiling using microarray and analysis of microarray data by Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) revealed that zerumbone treatment resulted in significant deregulation of genes regulating apoptosis, cell cycle, and metabolism. Indeed, tracing glucose metabolic pathways by growing HCC cells with 13C6-glucose and measuring extracellular and intracellular metabolites by 2D nuclear magnetic resonance (NMR) spectroscopy showed a reduction in glucose consumption and reduced lactate production, suggesting glycolytic inhibition. In addition, zerumbone impeded shunting of glucose-6-phosphate through the pentose phosphate pathway, thereby forcing tumor cells to undergo cell-cycle arrest and apoptosis. Importantly, zerumbone treatment suppressed subcutaneous and orthotopic growth and lung metastasis of HCC xenografts in immunocompromised mice. In conclusion, these findings reveal a novel and potentially effective therapeutic strategy for HCC using a natural product that targets cancer cell metabolism.Implications: Dietary compounds, like zerumbone, that impact cell cycle, apoptosis, and metabolic processes may have therapeutic benefits for HCC patients. Mol Cancer Res; 16(2); 256-68. ©2017 AACR.


Carcinoma, Hepatocellular/drug therapy , Glucose/metabolism , Glycolysis/drug effects , Liver Neoplasms/drug therapy , Sesquiterpenes/administration & dosage , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Gene Expression Profiling/methods , Gene Regulatory Networks/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Sesquiterpenes/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
13.
Mol Cell ; 67(3): 400-410.e7, 2017 Aug 03.
Article En | MEDLINE | ID: mdl-28735896

MicroRNA-122, an abundant and conserved liver-specific miRNA, regulates hepatic metabolism and functions as a tumor suppressor, yet systematic and direct biochemical elucidation of the miR-122 target network remains incomplete. To this end, we performed Argonaute crosslinking immunoprecipitation (Argonaute [Ago]-CLIP) sequencing in miR-122 knockout and control mouse livers, as well as in matched human hepatocellular carcinoma (HCC) and benign liver tissue to identify miRNA target sites transcriptome-wide in two species. We observed a majority of miR-122 binding on 3' UTRs and coding exons followed by extensive binding to other genic and non-genic sites. Motif analysis of miR-122-dependent binding revealed a G-bulged motif in addition to canonical motifs. A large number of miR-122 targets were found to be species specific. Upregulation of several common mouse and human targets, most notably BCL9, predicted survival in HCC patients. These results broadly define the molecular consequences of miR-122 downregulation in hepatocellular carcinoma.


Argonaute Proteins/genetics , Carcinoma, Hepatocellular/genetics , Immunoprecipitation/methods , Liver Neoplasms/genetics , MicroRNAs/genetics , Transcriptome , 3' Untranslated Regions , Animals , Argonaute Proteins/metabolism , Binding Sites , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Case-Control Studies , Cell Line, Tumor , Cell Proliferation , Computational Biology , Databases, Genetic , Down-Regulation , Exons , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Genotype , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Mice , Mice, Knockout , MicroRNAs/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phenotype , RNA Interference , Species Specificity , Time Factors , Transcription Factors , Transcription, Genetic , Transfection , Wnt Signaling Pathway
14.
Mol Cancer Ther ; 16(2): 312-322, 2017 02.
Article En | MEDLINE | ID: mdl-27980102

Hepatocellular carcinoma, a deadly disease, commonly arises in the setting of chronic inflammation. C-C motif chemokine ligand 2 (CCL2/MCP1), a chemokine that recruits CCR2-positive immune cells to promote inflammation, is highly upregulated in hepatocellular carcinoma patients. Here, we examined the therapeutic efficacy of CCL2-CCR2 axis inhibitors against hepatitis and hepatocellular carcinoma in the miR-122 knockout (a.k.a. KO) mouse model. This mouse model displays upregulation of hepatic CCL2 expression, which correlates with hepatitis that progress to hepatocellular carcinoma with age. Therapeutic potential of CCL2-CCR2 axis blockade was determined by treating KO mice with a CCL2-neutralizing antibody (nAb). This immunotherapy suppressed chronic liver inflammation in these mice by reducing the population of CD11highGr1+ inflammatory myeloid cells and inhibiting expression of IL6 and TNFα in KO livers. Furthermore, treatment of tumor-bearing KO mice with CCL2 nAb for 8 weeks significantly reduced liver damage, hepatocellular carcinoma incidence, and tumor burden. Phospho-STAT3 (Y705) and c-MYC, the downstream targets of IL6, as well as NF-κB, the downstream target of TNFα, were downregulated upon CCL2 inhibition, which correlated with suppression of tumor growth. In addition, CCL2 nAb enhanced hepatic NK-cell cytotoxicity and IFNγ production, which is likely to contribute to the inhibition of tumorigenesis. Collectively, these results demonstrate that CCL2 immunotherapy could be an effective therapeutic approach against inflammatory liver disease and hepatocellular carcinoma. Mol Cancer Ther; 16(2); 312-22. ©2016 AACR.


Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/metabolism , Chemokine CCL2/antagonists & inhibitors , Chemokine CCL2/metabolism , Liver Neoplasms/metabolism , Receptors, CCR2/metabolism , Signal Transduction/drug effects , Animals , Antibodies, Blocking/pharmacology , Antibodies, Neutralizing/pharmacology , Biomarkers , Biopsy , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Chemokine CCL2/genetics , Disease Models, Animal , Flow Cytometry , Gene Expression , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunohistochemistry , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Liver Neoplasms/diagnosis , Liver Neoplasms/drug therapy , Mice , Mice, Knockout , MicroRNAs/genetics , Receptors, CCR2/genetics , Tumor Burden/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
...