Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50
1.
Poult Sci ; 103(7): 103822, 2024 May 11.
Article En | MEDLINE | ID: mdl-38820969

A lean meat batter system was mixed with four plant proteins at 3, 6, 9, and 12% (w/w): pea protein A (PA), pea protein B (PB), brown rice protein (BR) and faba bean protein (FB). Texture profile analysis (TPA) revealed that increasing plant protein levels hardened the hybrid meat batters, with PA and PB leading to the hardest gels. TPA results were supported by micrographs, demonstrating that the two pea proteins formed large aggregates, contributing to a firmer hybrid meat gel. Dynamic rheology showed that the incorporation of plant proteins lowered the storage modulus (G') during the heating stage (20 to 72°C), yet the 6% PA treatment produced a final G' (after cooling) closest to the control (CL). Nuclear Magnetic Resonance (NMR) T2 relaxometry also demonstrated that plant proteins reduced the water mobility in hybrid meat batters. Results were in line with the cooking loss, except for a higher cooking loss in the BR formulation compared to the CL. Color measurement showed that increasing plant protein levels led to darker and yellower meat batters; however, the effect on redness varied among treatments. Overall, the findings suggest that pea proteins have superior functionality and compatibility within a lean poultry meat protein system, compared to BR and FB tested here.

2.
Sci Rep ; 14(1): 9007, 2024 04 18.
Article En | MEDLINE | ID: mdl-38637585

White striping (WS) is a myopathy of growing concern to the turkey industry. It is rising in prevalence and has negative consequences for consumer acceptance and the functional properties of turkey meat. The objective of this study was to conduct a genome-wide association study (GWAS) and functional analysis on WS severity. Phenotypic data consisted of white striping scored on turkey breast fillets (N = 8422) by trained observers on a 0-3 scale (none to severe). Of the phenotyped birds, 4667 genotypic records were available using a proprietary 65 K single nucleotide polymorphism (SNP) chip. The SNP effects were estimated using a linear mixed model with a 30-SNP sliding window approach used to express the percentage genetic variance explained. Positional candidate genes were those located within 50 kb of the top 1% of SNP windows explaining the most genetic variance. Of the 95 positional candidate genes, seven were further classified as functional candidate genes because of their association with both a significant gene ontology and molecular function term. The results of the GWAS emphasize the polygenic nature of the trait with no specific genomic region contributing a large portion to the overall genetic variance. Significant pathways relating to growth, muscle development, collagen formation, circulatory system development, cell response to stimulus, and cytokine production were identified. These results help to support published biological associations between WS and hypoxia and oxidative stress and provide information that may be useful for future-omics studies in understanding the biological associations with WS development in turkeys.


Muscular Diseases , Turkeys , Animals , Turkeys/genetics , Genome-Wide Association Study , Chickens/genetics , Muscular Diseases/metabolism , Phenotype , Meat/analysis
3.
Poult Sci ; 103(5): 103577, 2024 May.
Article En | MEDLINE | ID: mdl-38518668

In the current scientific literature, one can find >100 different methods to evaluate water-holding capacity in fresh and cooked meat. The main concepts are based on removing some of the water by either gravity, application of pressure (e.g., centrifugal force), and heating while measuring water exudate to predict the water holding capacity (WHC) during storage, processing, cooking, and/or distribution. More sophisticated methods include nuclear magnetic resonance (NMR) in which the relaxation of water molecules within a meat protein/gel system is measured to predict how the water (75% in lean meat) will behave during processing. Overall, the number of tests reported is also so high because there are quite big variations in test conditions (e.g., 750-30,000 g for centrifugal testing). The aim of this article (outcome of a symposium on methods for poultry meat characterization) is to help the reader navigate through the different setups and suggest standardized testing based on scientific principles. The recommended WHC test is the application of low centrifugal force (750 g so sample is not permanently deformed) to a protein gel, while the sample is placed on a screen platform to avoid reabsorbing the liquid separating during the slowing down of the centrifuge. It is also recognized that some meat samples (e.g., high in fat) might require a different g-force, so it is recommended to employ both the conditions mentioned above and the lab-specific conditions. Our overall goal should always be to increase uniformity in test procedures, which will enhance our capabilities to compare results among research groups.


Meat , Water , Animals , Water/analysis , Water/chemistry , Meat/analysis , Poultry , Food Handling/methods , Chickens/physiology
4.
Animals (Basel) ; 14(2)2024 Jan 05.
Article En | MEDLINE | ID: mdl-38254345

Spaghetti meat (SM) and woody breast (WB) are breast muscle myopathies of broiler chickens, characterized by separation of myofibers and by fibrosis, respectively. This study sought to investigate the transcriptomic profiles of breast muscles affected by SM and WB. Targeted sampling was conducted on a flock to obtain 10 WB, 10 SM, and 10 Normal Pectoralis major muscle samples from 37-day-old male chickens. Total RNA was extracted, cDNA was used for pair-end sequencing, and differentially expressed genes (DEGs) were determined by a false discovery rate of <0.1 and a >1.5-fold change. Principal component and heatmap cluster analyses showed that the SM and WB samples clustered together. No DEGs were observed between SM and WB fillets, while a total of 4018 and 2323 DEGs were found when comparing SM and WB, respectively, against Normal samples. In both the SM and WB samples, Gene Ontology terms associated with extracellular environment and immune response were enriched. The KEGG analysis showed enrichment of cytokine-cytokine receptor interaction and extracellular matrix-receptor interaction pathways in both myopathies. Although SM and WB are macroscopically different, the similar transcriptomic profiles suggest that these conditions may share a common pathogenesis. This is the first study to compare the transcriptomes of SM and WB, and it showed that, while both myopathies had profiles different from the normal breast muscle, SM and WB were similar, with comparable enriched metabolic pathways and processes despite presenting markedly different macroscopic features.

5.
J Food Sci Technol ; 60(10): 2581-2590, 2023 Oct.
Article En | MEDLINE | ID: mdl-37599844

Different conveyor belt materials used by the meat and other food industries were compared, regarding their cleanability as bacterial reduction rates in relation to their surface topography. Eleven thermoplastic polymers, four stainless steels, and five aluminized nanostructured surfaces were investigated under laboratory conditions. Cleanings were conducted with water only, and with an alkaline foam detergent. Overall, scanning electron microscopy revealed remarkable differences in the surface topography of the tested surfaces. Water cleaning results showed that nanostructured aluminized surfaces achieved significantly higher cleanability rates compared to the eight thermoplastic surfaces, as well as the glass-bead blasted rough stainless steel. Thermoplastic surfaces showed overall low cleanability rates when cleaned with alkaline detergent, while stainless steel and nanoporous aluminum showed high variations. Overall, nanoporous aluminum showed promising results as it can be used to coat conveyor belts. However, compatibility with cleaning detergent and sensitivity to scratches must be further investigated. Overall, it can be concluded that cleanability is not only influenced by surface roughness, but also by the overall surface finish, scratches, and defects. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05778-0.

6.
Poult Sci ; 102(10): 102907, 2023 Oct.
Article En | MEDLINE | ID: mdl-37579649

The aims of this study were to i) estimate the occurrence of pale, soft, and exudative (PSE) meat in modern commercial Ontario broiler flocks, ii) determine the effects of the chilling method (water vs. air) on PSE meat, and iii) investigate a new inexpensive colorimeter (10% of the price of traditional color meters), the Nix Color Sensor, as an objective color measurement of chicken meat. Between June 2019 to March 2020, a total of 17 different broiler flocks were processed. The color of 1,700 boneless skinless Pectoralis major muscles was randomly measured (100/flock), where 255 samples were also measured for pH, water-holding capacity (WHC), cooking loss, and penetration force. In addition, a traditional Minolta colorimeter was used to measure random 95 samples from a single water-chilled flock and subsequently compared the values obtained with the Nix Color Sensor. Strong correlations of L* values (rho = 0.75; P < 0.001), a* values (rho = 0.72; P < 0.001), and b* values (rho = 0.80; P < 0.001) were observed. When an L* value of 43 was used as the cut-off for the Nix, 12.5% of fillets were classified as PSE meat. Statistical differences (P < 0.05) were observed between the air and water-chill methods for L*, pH, and WHC. However, there were no significant differences observed between the 2 methods for cooking loss and penetration force values. The study indicated that PSE meat is still a challenge in Ontario broilers, and that the L*, pH, and WHC of breast meat (all indicate meat quality) are affected by the chilling method. In addition, the Nix was found to be an affordable, objective, and convenient sensor for measuring chicken meat color.


Chickens , Meat , Animals , Chickens/physiology , Color , Hydrogen-Ion Concentration , Meat/analysis , Cooking , Water
7.
Poult Sci ; 102(5): 102423, 2023 May.
Article En | MEDLINE | ID: mdl-36972671

Plant fiber addition (citrus A and B, apple, pea, bamboo, and sugar cane) to lean turkey meat was evaluated and texture, yield, and microstructure were compared to a control. The best 2 were the sugar cane and apple peel fibers which reduced cooking loss, and increased hardness by 20% compared to the control. The bamboo fibers significantly improved hardness but not yield, while the citrus A and apple fibers reduced cooking loss but did not affect hardness. The differences in the effect of fiber type on texture appear to be related to their origin (e.g., sugar cane and bamboo originating from large plants requiring strong fibers, compared citrus and apple fruits), and fiber length determined by the fiber extraction procedure.


Meat Products , Animals , Meat Products/analysis , Dietary Fiber/analysis , Poultry , Chickens , Cooking/methods
8.
Sci Rep ; 13(1): 38, 2023 01 02.
Article En | MEDLINE | ID: mdl-36593340

Robustness can refer to an animal's ability to overcome perturbations. Intense selection for production traits in livestock has resulted in reduced robustness which has negative implications for livability as well as production. There is increasing emphasis on improving robustness through poultry breeding, which may involve identifying novel phenotypes that could be used in selection strategies. The hypothalamic-pituitary-adrenal (HPA) axis and associated hormones (e.g., corticosterone) participate in many metabolic processes that are related to robustness. Corticosterone can be measured non-invasively in feathers (FCORT) and reflects the average HPA axis activity over the feather growing period, however measurement is expensive and time consuming. Fault bars are visible feather deformities that may be related to HPA axis activity and may be a more feasible indicator trait. In this study, we estimated variance components for FCORT and fault bars in a population of purebred turkeys as well as their genetic and partial phenotypic correlations with other economically relevant traits including growth and efficiency, carcass yield, and meat quality. The estimated heritability for FCORT was 0.21 ± 0.07 and for the fault bar traits (presence, incidence, severity, and index) estimates ranged from 0.09 to 0.24. The genetic correlation of FCORT with breast weight, breast meat yield, fillet weight, and ultimate pH were estimated at -0.34 ± 0.21, -0.45 ± 0.23, -0.33 ± 0.24, and 0.32 ± 0.24, respectively. The phenotypic correlations of FCORT with breast weight, breast meat yield, fillet weight, drum weight, and walking ability were -0.16, -0.23, -0.18, 0.17, and 0.21, respectively. Some fault bar traits showed similar genetic correlations with breast weight, breast meat yield, and walking ability but the magnitude was lower than those with FCORT. While the dataset is limited and results should be interpreted with caution, this study indicates that selection for traits related to HPA axis activity is possible in domestic turkeys. Further research should focus on investigating the association of these traits with other robustness-related traits and how to potentially implement these traits in turkey breeding.


Feathers , Turkeys , Animals , Turkeys/genetics , Corticosterone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Phenotype
9.
Crit Rev Food Sci Nutr ; 63(18): 3097-3129, 2023.
Article En | MEDLINE | ID: mdl-34609270

The growing human population is currently facing an unprecedented challenge on global food production and sustainability. Despite recognizing poultry as one of the most successful and rapidly growing food industries to address this challenge; poultry health and safety remain major issues that entail immediate attention. Bacterial diseases including colibacillosis, salmonellosis, and necrotic enteritis have become increasingly prevalent during poultry production. Likewise, outbreaks caused by consumption of undercooked poultry products contaminated with zoonotic bacterial pathogens such as Salmonella, Campylobacter and Listeria, are a serious public health concern. With antimicrobial resistance problem and restricted use of antibiotics in food producing animals, bacteriophages are increasingly recognized as an attractive natural antibacterial alternative. Bacteriophages have recently shown promising results to treat diseases in poultry, reduce contamination of carcasses, and enhance the safety of poultry products. Omics technologies have been successfully employed to accurately characterize bacteriophages and their genes/proteins important for interaction with bacterial hosts. In this review, the potential of using lytic bacteriophages to mitigate the risk of major poultry-associated bacterial pathogens are explored. This study also explores challenges associated with the adoption of this technology by industries. Furthermore, the impact of omics approaches on studying bacteriophages, their host interaction and applications is discussed.


Bacterial Infections , Bacteriophages , Salmonella Food Poisoning , Animals , Humans , Poultry , Salmonella , Bacteria , Anti-Bacterial Agents
10.
Poult Sci ; 102(2): 102309, 2023 Feb.
Article En | MEDLINE | ID: mdl-36473378

The combined effects of different severities of Wooden Breast (WB), White Striping (WS), and Spaghetti Meat (SM) were examined in 300 chicken breast fillets from 10 flocks. Severity (0 = absent, 1 = mild, noticeable upon close inspection, 2 = severe), noticeably altered from normal breast fillet (NB). Results showed that any combination of myopathies and severity resulted in significantly elevated compression force, pH and peak counts measured by the shear force test. With the exception of mild WB + mild WS, all combinations resulted in significantly higher drip loss, cooking loss and lightness value. Overall, the quality of fillets was affected the least by WS, while negatively affected the most by SM. There were limited effects on fillet quality from mild WB but major deleterious effects from severe WB.


Muscular Diseases , Poultry Diseases , Animals , Chickens , Pectoralis Muscles/chemistry , Canada , Meat/analysis , Muscular Diseases/veterinary
11.
Poult Sci ; 102(2): 102307, 2023 Feb.
Article En | MEDLINE | ID: mdl-36473381

A dorsal recumbency syndrome (DRS) has been recently described in market-age broiler chickens. Affected broilers fall onto their backs, and are unable to right themselves, and eventually die of cardiopulmonary insufficiency. These broilers are referred to as turtle chickens. A previous report and anecdotal evidence suggest that breast myopathies, such as woody breast (WB), may be associated with DRS due to impaired contractility of the pectoral muscles. In this study, we aimed to provide additional evidence to document DRS in broilers, and its possible association with breast myopathies. A total of 64 broilers (Ross 708), 33 DRS-affected and 31 controls, were culled between 42 and 48 d of age from 3 different commercial farms over 4 visits. All broilers underwent postmortem analysis; breast muscles were scored grossly and/or histologically to determine the presence and severity of myopathies, and sera were used to determine the level of aspartate aminotransferase (AST) and creatine kinase (CK). A gross diagnosis of WB was moderately associated with DRS broilers, and DRS broilers displayed a greater microscopic severity of lesions (P < 0.001) in the Pectoralis major, as typically observed with WB. Levels of AST and CK were greater (P < 0.001) in the sera of DRS-affected compared to control broilers, consistent with muscular damage. The frequency of cardiac changes, such as mild hydropericardium and right ventricular dilation, or severity of microscopic pulmonary lesions, such as edema, were not significantly different between the 2 groups. The odds of DRS increased with the histology score of the P. major (OR = 1.37, 95% CI 1.02-1.85). The data presented in this study support an association between DRS and muscular damage of the P. major, suggesting that WB may predispose broilers to DRS. DRS might be a cause of broiler death, and this syndrome could be responsible for significant financial loss to the farmers and to the whole poultry industry.


Muscular Diseases , Poultry Diseases , Animals , Ontario/epidemiology , Chickens/physiology , Meat/analysis , Poultry Diseases/pathology , Muscular Diseases/epidemiology , Muscular Diseases/veterinary , Muscular Diseases/etiology , Pectoralis Muscles/pathology
12.
Gels ; 10(1)2023 Dec 21.
Article En | MEDLINE | ID: mdl-38275847

The effects of salt-sensitive alginate ("A") and a two-component salt-tolerant alginate system ("B") used at a 0.5% or 1.0% level were evaluated in normal breast (NB) chicken fillets and in spaghetti meat (SM) fillets. Minced raw and cooked SM samples showed higher cooking loss (p < 0.05) and lower penetration force compared to NB meat. Both alginate systems significantly raised the penetration force in raw samples and decreased cooking loss (p < 0.05). Adding 1% of "A" or 0.5% "B" to SM, without salt, resulted in a similar penetration force as the cooked NB meat, while 1% "B" with salt resulted in a higher penetration force. Excluding salt from SM samples while adding alginate "A" or "B" improved texture profiles, but not to the same level as using NB without additives. Overall, salt, together with alginate "B", improved the texture of SM to that of normal meat without myopathy.

13.
Animals (Basel) ; 12(20)2022 Oct 14.
Article En | MEDLINE | ID: mdl-36290153

The poultry meat industry has gone through many changes. It moved from growing dual-purpose birds (meat and egg production) taking ~110 days to reach 1.2 kg 100 years ago, to developing specialized meat breeds that grow to 2.5 kg within ~40 days. It also moved from selling ~80% whole birds to mostly selling cut up and further processed products in the Western world. This necessitated building large, centralized processing plants, capable of processing 15,000 birds per hr on a single line (60 years ago only 2500), that require higher bird uniformity (size, color, texture). Furthermore, consumer demand for convenient products resulted in introducing many cut-up fresh poultry (some companies have 500 SKU) and further processed products (chicken nuggets did not exist 50 years ago). Those developments were possible due to advancements in genetics, nutrition, medicine, and engineering at the farm and processing plant levels. Challenges keep on coming and today a rise in myopathies (e.g., so called woody breast, white striping, spaghetti meat), requires solutions from breeders, farmers, and processing plants, as more automation also requires more uniformity. This review focuses on the changes and challenges to the processing industry segment required to keep supplying high quality poultry to the individual consumer.

14.
Gels ; 8(9)2022 Sep 02.
Article En | MEDLINE | ID: mdl-36135272

The use of caseinate, whole milk powder, and two whey protein preparations (WP; 2% w/w) was studied in minced meat made with normal breast (NB), and ones showing spaghetti meat (SM). SM is an emerging myopathy known for muscle fiber separation and lower protein content, costing $100s of millions to the industry. Using SM without dairy proteins resulted in a higher cooking loss (SM: 3.75%, NB: 2.29%; p < 0.05), and lower hardness (SM: 29.83 N, NB: 34.98 N), and chewiness (SM: 1.29, NB: 1.56) compared to NB. Using dairy proteins, except WP concentrate and WP isolate, significantly improved yield and increased hardness. Adding WP isolate to SM resulted in a similar texture profile as NB samples without dairy proteins (34 and 35 N hardness; 0.22 and 0.24 springiness; 1.57 and 1.59 chewiness values, respectively). Adding caseinate and whole milk to SM showed a more substantial effect of improving water-holding capacity, increasing hardness, gumminess, and chewiness compared to adding WP; i.e., adding caseinate and milk powder resulted in higher values for those parameters compared to NB without additives. Overall, it is shown that dairy proteins can be added to SM to produce minced poultry meat products with similar or higher yield and texture profiles compared to using normal breast fillets.

15.
Poult Sci ; 101(10): 102055, 2022 Oct.
Article En | MEDLINE | ID: mdl-35973350

The presence of meat quality defects is increasing in the turkey industry. While the main strategy for mitigating these issues is through improved housing, management, and slaughter conditions, it may be possible to incorporate meat quality into a turkey breeding strategy with the intent to improve meat quality. Before this can occur, it is important to describe the current state of turkey meat quality as well as the correlations among the different meat quality traits and important production traits. The main objective of the present study was to provide a descriptive analysis of 8 different meat quality traits for turkey breast meat from 3 different purebred lines (A, B, and C), and their correlation with a selection of production traits. Using a total of 7,781 images, the breast meat (N = 590-3,892 birds depending on trait) was evaluated at 24 h postmortem for color (L*, a*, b*), pH, and physiochemical characteristics (drip loss, cooking loss, shear force). Descriptive statistics (mean and standard deviation) and Pearson correlations were computed to describe the relationships among traits within each genetic line. A one-factor ANOVA and post hoc t-test were conducted for each trait and between each of the genetic lines. We found significant differences between genetic lines for some color traits (L* and a*), pHinitial, drip loss, and cooking loss. The lightest line in weight (line B) had meat that was the lightest (L*) in color. The heaviest line (line C) had meat that was less red (a*) with a higher pHinitial and greater cooking loss. Unfavorable correlations between production traits and meat quality were also found for each of the genetic lines where increases in production (e.g., body weight, growth rate) resulted in meat that was lighter and redder in color and in some cases (line B and C), with an increased moisture loss. The results of this study provide an important benchmark for turkey meat quality in purebred lines and provide an updated account of the relationships between key production traits and meat quality. Although the magnitude of these correlations is low, their cumulative effect on meat quality can be more significant especially with continued selection pressure on growth and yield.


Chickens , Meat , Animals , Cooking , Phenotype , Turkeys/genetics
16.
PLoS One ; 17(4): e0267019, 2022.
Article En | MEDLINE | ID: mdl-35427383

Spaghetti meat (SM), woody breast (WB), and white striping (WS) are myopathies that affect the pectoral muscle of fast-growing broiler chickens. The prevalence and possible risk factors of these myopathies have been reported in other countries, but not yet in Canada. Thus, the objective of this study was to assess the prevalence and risk factors associated with these myopathies in a representative population of Canadian broilers. From May 2019 to March 2020, 250 random breast fillets from each of 37 flocks (total, 9,250) were obtained from two processing plants and assessed for the presence and severity of myopathies. Demographic data (e.g., sex and average live weight), environmental conditions during the grow-out period (e.g., temperature), and husbandry parameters (e.g., vaccination) were collected for each flock. Associations between these factors and the myopathies were tested using logistic regression analyses. The prevalence of SM, severe WB, and mild or moderate WS was 36.3% (95% CI: 35.3-37.3), 11.8% (95% CI: 11.2-12.5), and 96.0% (95% CI: 95.6-96.4), respectively. Most (85.1%) of the fillets showed multiple myopathies. Regression analyses showed that the odds of SM increased with live weight (OR = 1.30, 95% CI 1.01-1.69) and higher environmental temperature during the grow-out period (OR = 1.75, 95% CI 1.31-2.34). The odds of WB increased with live weight (OR = 1.23, 95% CI 1.03-1.47) and when flocks were not vaccinated against coccidia (OR = 1.86, 95% CI 1.51-2.29). This study documents for the first time a high prevalence of myopathies in Ontario broilers, and suggests that these lesions may have a significant economic impact on the Canadian poultry industry. Our results indicate that environmental conditions and husbandry are associated with the development of breast myopathies, in agreement with the current literature. Future studies are needed to determine how risk factors can promote the occurrence of these conditions, in order to implement possible mitigating strategies.


Muscular Diseases , Poultry Diseases , Animals , Chickens/physiology , Meat/analysis , Muscular Diseases/epidemiology , Muscular Diseases/etiology , Muscular Diseases/veterinary , Ontario , Pectoralis Muscles/pathology , Poultry Diseases/pathology , Prevalence , Risk Factors
17.
Poult Sci ; 101(4): 101747, 2022 Apr.
Article En | MEDLINE | ID: mdl-35245806

Spaghetti meat (SM), woody breast (WB), and white striping (WS) are myopathies affecting breast muscle of broiler chickens, and are characterized by a loss of myofibers and an increase in fibrous tissue. The conditions develop in intensive broiler chicken production systems, and cause poor meat process-ability and negative customer perception leading to monetary losses. The objectives of the present study were to describe the physical and histological characteristics of breast myopathies from commercial broiler chicken flocks in Ontario, Canada, and to assess the associations between the severity of myopathies with the physical and histological characteristics of the affected breast muscle fillets. Chicken breast fillets (n = 179) were collected over 3 visits from a processing plant and scored macroscopically to assess the severity of myopathies, following an established scoring scheme. For each fillet, the surface area, length, width, thickness, weight, and hardness (compression force) were measured. A subset of 60 fillets was evaluated microscopically. Multinomial logistic regression models were built to evaluate associations between physical parameters and macroscopic scores. The odds of SM co-occurring with severe WB (SM1WB2) were significantly associated with increased fillet thickness (OR = 1.59, 95% CI 1.31-1.94) and weight (OR = 1.06, 95% CI 1.03-1.09). Histologically, myopathies had overlapping lesions consisting of polyphasic myodegeneration, perivascular inflammatory cuffing and accumulation of fibrous tissue and fat. The pairwise correlation between macroscopic and microscopic scores was moderate (rho 0.45, P < 0.001). This is the first study to characterize breast myopathies in Canadian broiler flocks. Results show that the morphologic and microscopic changes of fillets from this cohort are similar to data from other countries, and provide database to benchmark these parameters in future studies. Our standardized categorization can be applied to broiler breast fillets in other regions of the world.


Muscular Diseases , Poultry Diseases , Animals , Chickens , Humans , Meat/analysis , Muscular Diseases/epidemiology , Muscular Diseases/etiology , Muscular Diseases/veterinary , Ontario/epidemiology , Pectoralis Muscles/physiology , Poultry Diseases/pathology
18.
Front Genet ; 13: 842584, 2022.
Article En | MEDLINE | ID: mdl-35309137

Due to the increasing prevalence of growth-related myopathies and abnormalities in turkey meat, the ability to include meat quality traits in poultry breeding strategies is an issue of key importance. In the present study, genetic parameters for meat quality traits and their correlations with body weight and meat yield were estimated using a population of purebred male turkeys. Information on live body, breast, thigh, and drum weights, breast meat yield, feed conversion ratio, breast lightness (L*), redness (a*), and yellowness (b*), ultimate pH, and white striping (WS) severity score were collected on 11,986 toms from three purebred genetic lines. Heritability and genetic and partial phenotypic correlations were estimated for each trait using an animal model with genetic line, hatch week-year, and age at slaughter included as fixed effects. Heritability of ultimate pH was estimated to be 0.34 ± 0.05 and a range of 0.20 ± 0.02 to 0.23 ± 0.02 for breast meat colour (L*, a*, and b*). White striping was also estimated to be moderately heritable at 0.15 ± 0.02. Unfavorable genetic correlations were observed between body weight and meat quality traits as well as white striping, indicating that selection for increased body weight and meat yield may decrease pH and increase the incidence of pale meat with more severe white striping. The results of this analysis provide insight into the effect of current selection strategies on meat quality and emphasize the need to include meat quality traits into future selection indexes for turkeys.

19.
Front Vet Sci ; 9: 822447, 2022.
Article En | MEDLINE | ID: mdl-35265694

Wing flapping and body movement can occur during the slaughter of poultry. Wing movement and flapping are driven primarily by the breast muscles (Pectoralis major and minor), and this muscle activity may have implications for meat quality. The objective of this study was to evaluate turkey post mortem activity during slaughter at a commercial poultry processing plant. Post mortem activity (during bleeding) was scored on 5,441 male turkeys, from six different genetic lines, using a 1-4 scale from none to severe wing flapping. Meat quality was measured on these birds in terms of pH (initial, ultimate, delta or change), color (L*, a*, b*), and physiochemical traits (drip loss, cooking loss, shear force). Linear mixed models were used to analyze the effect of activity (score 1-4), genetic line (A-F), and season (summer vs. autumn) on the nine meat quality traits. Post mortem activity influenced a*, drip loss, and shear force although the magnitude of the effects was small. There was an effect (P < 0.05) of genetic line on all the meat quality traits except for L*, cooking loss, and shear force. In general, larger, faster-growing lines had higher pH, but the relationship between the lines for the other traits is not as clear. Season affected all the meat quality traits, except for pHdelta, with meat having a higher pH, L*, b*, drip loss, cooking loss, and shear force in the summer. This study provides an exploratory assessment of post mortem activity in turkeys and identifies meat quality traits which are most affected while also accounting for the effects of genetic line and season. Although identified effect sizes are small, the cumulative effect on turkey meat quality may be more substantial.

20.
Animals (Basel) ; 12(3)2022 Jan 21.
Article En | MEDLINE | ID: mdl-35158578

To efficiently meet consumer demands for high-quality lean meat, turkeys are selected for increased meat yield, mainly by increasing breast muscle size and growth efficiency. Over time, this has altered muscle morphology and development rates, which are believed to contribute to the prevalence of myopathies. White striping is a myopathy of economic importance which presents as varying degrees of white striations on the surface of skinless breast muscle and can negatively affect consumer acceptance at the point of sale. Breeding for improved meat quality may be a novel strategy for mitigating the development of white striping in turkey meat; however, it is crucial to have a reliable assessment tool before it can be considered as a phenotype. Six observers used a four-category scoring system (0-3) to score severity in several controlled rounds and evaluate intra- and inter-observer reliability of the scoring system. After sufficient inter-observer reliability (Kendall's W > 0.6) was achieved, 12,321 turkey breasts, from four different purebred lines, were scored to assess prevalence of the condition and analyze its relationship with important growth traits. Overall, the prevalence of white striping (Score > 0) was approximately 88% across all genetic lines studied, with most scores being of moderate-severe severity (Score 1 or 2). As was expected, increased white striping severity was associated with higher slaughter weight, breast weight, and breast meat yield (BMY) within each genetic line. This study highlights the importance of training to improve the reliability of a scoring system for white striping in turkeys and was required to provide an updated account on white striping prevalence in modern turkeys. Furthermore, we showed that white striping is an important breast muscle myopathy in turkeys linked to heavily selected traits such as body weight and BMY. White striping should be investigated further as a novel phenotype in future domestic turkey selection through use of a balanced selection index.

...