Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; : 100589, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969064

ABSTRACT

BACKGROUND: Severe hypertriglyceridemia (HTG) has predominantly multifactorial causes (MCS). Yet a small subset of patients have the monogenetic form (FCS). It remains a challenge to distinguish patients clinically, since decompensated MCS might mimic FCS´s severity. Aim of the current study was to determine clinical criteria that could sufficiently distinguish both forms as well as to apply the FCS score proposed by Moulin and colleagues. METHODS: We retrospectively studied 72 patients who presented with severe HTG in our clinic during a time span of seven years and received genetic testing. We classified genetic variants (ACMG-criteria), followed by genetic categorization into MCS or FCS. Clinical data were gathered from the medical records and the FCS score was calculated for each patient. RESULTS: Molecular genetic screening revealed eight FCS patients and 64 MCS patients. Altogether, we found 13 pathogenic variants of which four have not been described before. The FCS patients showed a significantly higher median triglyceride level compared to the MCS. The FCS score yielded a sensitivity of 75% and a specificity of 93.7% in our cohort, and significantly differentiated between the FCS and MCS group (p<0.001). CONCLUSIONS: In our cohort we identified several variables that significantly differentiated FCS from MCS. The FCS score performed similar to the original study by Moulin, thereby further validating the discriminatory power of the FCS score in an independent cohort.

2.
Clin Genet ; 98(5): 457-467, 2020 11.
Article in English | MEDLINE | ID: mdl-32770674

ABSTRACT

Autosomal-dominant familial hypercholesterolemia (FH) is characterized by increased plasma concentrations of low-density lipoprotein cholesterol (LDL-C) and a substantial risk to develop cardiovascular disease. Causative mutations in three major genes are known: the LDL receptor gene (LDLR), the apolipoprotein B gene (APOB) and the proprotein convertase subtilisin/kexin 9 gene (PCSK9). We clinically characterized 336 patients suspected to have FH and screened them for disease causing mutations in LDLR, APOB, and PCSK9. We genotyped six single nucleotide polymorphisms (SNPs) to calculate a polygenic risk score for the patients and 1985 controls. The 117 patients had a causative variant in one of the analyzed genes. Most variants were found in the LDLR gene (84.9%) with 11 novel mutations. The mean polygenic risk score was significantly higher in FH mutation negative subjects than in FH mutation positive patients (P < .05) and healthy controls (P < .001), whereas the score of the two latter groups did not differ significantly. However, the score explained only about 3% of the baseline LDL-C variance. We verified the previously described clinical and genetic variability of FH for German hypercholesterolemic patients. Evaluation of a six-SNP polygenic score recently proposed for clinical use suggests that it is not a reliable tool to classify hypercholesterolemic patients.


Subject(s)
Apolipoprotein B-100/genetics , Cholesterol, LDL/genetics , Hyperlipoproteinemia Type II/genetics , Proprotein Convertase 9/genetics , Receptors, LDL/genetics , Cardiovascular Diseases/blood , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Cholesterol, LDL/blood , Female , Genotype , Humans , Hyperlipoproteinemia Type II/blood , Hyperlipoproteinemia Type II/pathology , Male , Middle Aged , Multifactorial Inheritance/genetics , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL