Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
JCI Insight ; 8(9)2023 05 08.
Article in English | MEDLINE | ID: mdl-36927955

ABSTRACT

Overgrowth syndromes can be caused by pathogenic genetic variants in epigenetic writers, such as DNA and histone methyltransferases. However, no overgrowth disorder has previously been ascribed to variants in a gene that acts primarily as an epigenetic reader. Here, we studied a male individual with generalized overgrowth of prenatal onset. Exome sequencing identified a hemizygous frameshift variant in Spindlin 4 (SPIN4), with X-linked inheritance. We found evidence that SPIN4 binds specific histone modifications, promotes canonical WNT signaling, and inhibits cell proliferation in vitro and that the identified frameshift variant had lost all of these functions. Ablation of Spin4 in mice recapitulated the human phenotype with generalized overgrowth, including increased longitudinal bone growth. Growth plate analysis revealed increased cell proliferation in the proliferative zone and an increased number of progenitor chondrocytes in the resting zone. We also found evidence of decreased canonical Wnt signaling in growth plate chondrocytes, providing a potential explanation for the increased number of resting zone chondrocytes. Taken together, our findings provide strong evidence that SPIN4 is an epigenetic reader that negatively regulates mammalian body growth and that loss of SPIN4 causes an overgrowth syndrome in humans, expanding our knowledge of the epigenetic regulation of human growth.


Subject(s)
Epigenesis, Genetic , Genes, X-Linked , Male , Humans , Mice , Animals , Syndrome , Cell Cycle Proteins , Mammals
2.
Genet Med ; 22(8): 1329-1337, 2020 08.
Article in English | MEDLINE | ID: mdl-32341572

ABSTRACT

PURPOSE: Impaired function of gonadotropin-releasing hormone (GnRH) neurons can cause a phenotypic spectrum ranging from delayed puberty to isolated hypogonadotropic hypogonadism (IHH). We sought to identify a new genetic etiology for these conditions. METHODS: Exome sequencing was performed in an extended family with autosomal dominant, markedly delayed puberty. The effects of the variant were studied in a GnRH neuronal cell line. Variants in the same gene were sought in a large cohort of individuals with IHH. RESULTS: We identified a rare missense variant (F900V) in DLG2 (which encodes PSD-93) that cosegregated with the delayed puberty. The variant decreased GnRH expression in vitro. PSD-93 is an anchoring protein of NMDA receptors, a type of glutamate receptor that has been implicated in the control of puberty in laboratory animals. The F900V variant impaired the interaction between PSD-93 and a known binding partner, Fyn, which phosphorylates NMDA receptors. Variants in DLG2 that also decreased GnRH expression were identified in three unrelated families with IHH. CONCLUSION: The findings indicate that variants in DLG2/PSD-93 cause autosomal dominant delayed puberty and may also contribute to IHH. The findings also suggest that the pathogenesis involves impaired NMDA receptor signaling and consequently decreased GnRH secretion.


Subject(s)
Gonadotropin-Releasing Hormone , Hypogonadism , Gonadotropin-Releasing Hormone/genetics , Guanylate Kinases , Humans , Hypogonadism/genetics , Proteins , Signal Transduction , Tumor Suppressor Proteins , Exome Sequencing
3.
Bone ; 125: 169-177, 2019 08.
Article in English | MEDLINE | ID: mdl-31121357

ABSTRACT

Longitudinal bone growth is driven by endochondral ossification, a process in which cartilage tissue is generated by growth plate chondrocytes and then remodeled into bone by osteoblasts. In the postnatal growth plate, as hypertrophic chondrocytes approach the chondro-osseous junction, they may undergo apoptosis, or directly transdifferentiate into osteoblasts. The molecular mechanisms governing this switch in cell lineage are poorly understood. Here we show that the physiological downregulation of Sox9 in hypertrophic chondrocyte is associated with upregulation of osteoblast-associated genes (such as Mmp13, Cola1, Ibsp) in hypertrophic chondrocytes, before they enter the metaphyseal bone. In transgenic mice that continued to express Sox9 in all cells derived from the chondrocytic lineage, upregulation of these osteoblast-associated genes in the hypertrophic zone failed to occur. Furthermore, lineage tracing experiments showed that, in transgenic mice expressing Sox9, the number of chondrocytes transdifferentiating into osteoblasts was markedly reduced. Collectively, our findings suggest that Sox9 downregulation in hypertrophic chondrocytes promotes expression of osteoblast-associated genes in hypertrophic chondrocytes and promotes the subsequent transdifferentiation of these cells into osteoblasts.


Subject(s)
Cell Transdifferentiation/physiology , Chondrocytes/cytology , Chondrocytes/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , SOX9 Transcription Factor/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Transdifferentiation/genetics , Cells, Cultured , Female , In Situ Hybridization , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence , SOX9 Transcription Factor/genetics
4.
Mol Ther ; 27(3): 673-680, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30765323

ABSTRACT

Recombinant human growth hormone (GH) is commonly used to treat short stature in children. However, GH treatment has limited efficacy, particularly in severe, non-GH-deficient conditions such as chondrodysplasias, and potential off-target effects. Because short stature results from decreased growth plate chondrogenesis, we developed a cartilage-targeting single-chain human antibody fragment (CaAb) aiming to deliver therapeutic molecules to the growth plate, thereby increasing treatment efficacy while minimizing adverse effects on other tissues. To this end, we created fusion proteins of these CaAbs conjugated with insulin-like growth factor 1 (IGF-1), an endocrine and/or paracrine factor that positively regulates chondrogenesis. These CaAb-IGF-1 fusion proteins retained both cartilage binding and IGF-1 biological activity, and they were able to stimulate bone growth in an organ culture system. Using a GH-deficient (lit) mouse model, we found that subcutaneous injections of these CaAb-IGF-1 fusion proteins increased overall growth plate height without increasing proliferation in kidney cortical cells, suggesting on-target efficacy at the growth plate and less off-target effect on the kidney than IGF-1 alone. Alternate-day injections of these fusion proteins, unlike IGF-1 alone, were sufficient to produce a therapeutic effect. Our findings provide proof of principle that targeting therapeutics to growth plate cartilage can potentially improve treatment for childhood growth disorders.


Subject(s)
Insulin-Like Growth Factor I/pharmacology , Animals , Cartilage/drug effects , Cartilage/metabolism , Chondrogenesis/drug effects , Growth Plate/drug effects , Growth Plate/metabolism , Humans , MCF-7 Cells , Mice , Mice, Inbred C57BL , Mutation/genetics
5.
J Clin Endocrinol Metab ; 103(4): 1470-1478, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29244146

ABSTRACT

Context: Weaver syndrome is characterized by tall stature, advanced bone age, characteristic facies, and variable intellectual disability. It is caused by heterozygous mutations in enhancer of zeste homolog 2 (EZH2), a histone methyltransferase responsible for histone H3 at lysine 27 (H3K27) trimethylation. However, no early truncating mutations have been identified, suggesting that null mutations do not cause Weaver syndrome. Objective: To test alternative hypotheses that EZH2 variants found in Weaver syndrome cause either a gain of function or a partial loss of function. Design: Exome sequencing was performed in a boy with tall stature, advanced bone age, and mild dysmorphic features. Mutant or wild-type EZH2 protein was expressed in mouse growth plate chondrocytes with or without endogenous EZH2, and enzymatic activity was measured. A mouse model was generated, and histone methylation was assessed in heterozygous and homozygous embryos. Results: A de novo missense EZH2 mutation [c.1876G>A (p.Val626Met)] was identified in the proband. When expressed in growth plate chondrocytes, the mutant protein showed decreased histone methyltransferase activity. A mouse model carrying this EZH2 mutation was generated using CRISPR/Cas9. Homozygotes showed perinatal lethality, whereas heterozygotes were viable, fertile, and showed mild overgrowth. Both homozygous and heterozygous embryos showed decreased H3K27 methylation. Conclusion: We generated a mouse model with the same mutation as our patient, found that it recapitulates the Weaver overgrowth phenotype, and demonstrated that EZH2 mutations found in Weaver syndrome cause a partial loss of function.


Subject(s)
Abnormalities, Multiple/genetics , Congenital Hypothyroidism/genetics , Craniofacial Abnormalities/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Hand Deformities, Congenital/genetics , Histone-Lysine N-Methyltransferase/metabolism , Mutation , Animals , Child , Exome , Histone Methyltransferases , Humans , Male , Mice
6.
J Pediatr ; 190: 229-235, 2017 11.
Article in English | MEDLINE | ID: mdl-29144249

ABSTRACT

OBJECTIVE: Antiandrogen, aromatase inhibitor, and gonadotropin-releasing hormone analog (GnRHa) treatment normalizes growth rate and bone maturation and increases predicted adult height (AH) in boys with familial male-limited precocious puberty (FMPP). To evaluate the effect of long-term antiandrogen, aromatase inhibitor, and GnRHa on AH, boys with FMPP who were treated were followed to AH. STUDY DESIGN: Twenty-eight boys with FMPP, referred to the National Institutes of Health, were started on antiandrogen and aromatase inhibitor at 4.9 ± 1.5 years of age; GnRHa was added at 6.9 ± 1.5 years of age. Treatment was discontinued at 12.2 ± 0.5 years of age (bone age, 14.4 ± 1.3). AH was assessed at 16.4 ± 1.3 years of age (bone age, 18.5 ± 0.6). RESULTS: AH (mean ± SD) for all treated subjects was 173.6 ± 6.8 cm (-0.4 ± 1.0 SD relative to adult US males). For 25 subjects with pretreatment predicted AH, AH significantly exceeded predicted AH at treatment onset (173.8 ± 6.9 vs 164.9 ± 10.7 cm; P < .001), but fell short of predicted AH at treatment discontinuation (177.3 ± 9.0 cm; P < .001). For 11 subjects with maternal or sporadic inheritance, the mean AH was 3.1 cm (0.4 SD score) below sex-adjusted midparental height (175.4 ± 5.8 vs 178.5 ± 3.1 cm [midparental height]; P = .10). For 16 subjects with affected and untreated fathers, AH was significantly greater than fathers' AH (172.8 ± 7.4 vs 168.8 ± 7.2 cm; P < .05). CONCLUSIONS: Long-term treatment with antiandrogen, aromatase inhibitor, and GnRHa in boys with FMPP results in AH modestly below sex-adjusted midparental height and within the range for adult males in the general population.


Subject(s)
Androgen Antagonists/therapeutic use , Aromatase Inhibitors/therapeutic use , Body Height/drug effects , Leuprolide/therapeutic use , Puberty, Precocious/drug therapy , Triptorelin Pamoate/analogs & derivatives , Adult , Anastrozole , Child , Child, Preschool , Drug Administration Schedule , Drug Therapy, Combination , Follow-Up Studies , Gonadotropin-Releasing Hormone/analogs & derivatives , Humans , Male , Nitriles/therapeutic use , Puberty, Precocious/physiopathology , Spironolactone/therapeutic use , Testolactone/therapeutic use , Treatment Outcome , Triazoles/therapeutic use , Triptorelin Pamoate/therapeutic use
7.
Nat Commun ; 7: 13685, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27897169

ABSTRACT

Histone methyltransferases EZH1 and EZH2 catalyse the trimethylation of histone H3 at lysine 27 (H3K27), which serves as an epigenetic signal for chromatin condensation and transcriptional repression. Genome-wide associated studies have implicated EZH2 in the control of height and mutations in EZH2 cause Weaver syndrome, which includes skeletal overgrowth. Here we show that the combined loss of Ezh1 and Ezh2 in chondrocytes severely impairs skeletal growth in mice. Both of the principal processes underlying growth plate chondrogenesis, chondrocyte proliferation and hypertrophy, are compromised. The decrease in chondrocyte proliferation is due in part to derepression of cyclin-dependent kinase inhibitors Ink4a/b, while ineffective chondrocyte hypertrophy is due to the suppression of IGF signalling by the increased expression of IGF-binding proteins. Collectively, our findings reveal a critical role for H3K27 methylation in the regulation of chondrocyte proliferation and hypertrophy in the growth plate, which are the central determinants of skeletal growth.


Subject(s)
Bone Development , Chondrocytes/metabolism , Chondrocytes/pathology , Enhancer of Zeste Homolog 2 Protein/metabolism , Polycomb Repressive Complex 2/metabolism , Animals , Animals, Newborn , Bone Development/genetics , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p15/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Growth Plate/metabolism , Hypertrophy , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor Binding Protein 5/metabolism , Mice, Inbred C57BL , Models, Biological , Tibia/metabolism , Up-Regulation
8.
Endocrinology ; 155(8): 2892-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24708243

ABSTRACT

With age, growth plate cartilage undergoes programmed senescence, eventually causing cessation of bone elongation and epiphyseal fusion. Estrogen accelerates this developmental process. We hypothesized that senescence occurs because progenitor cells in the resting zone are depleted in number and that estrogen acts by accelerating this depletion. To test this hypothesis, juvenile ovariectomized rabbits received injections of estradiol cypionate or vehicle for 5 weeks, and then were left untreated for an additional 5 weeks. Exposure to estrogen accelerated the normal decline in growth plate height and in the number of proliferative and hypertrophic chondrocytes. Five weeks after discontinuation of estrogen treatment, these structural parameters remained advanced, indicating an irreversible advancement in structural senescence. Similarly, transient estrogen exposure hastened epiphyseal fusion. Estrogen also caused a more rapid decline in functional parameters of growth plate senescence, including growth rate, proliferation rate, and hypertrophic cell size. However, in contrast to the structural parameters, once the estrogen treatment was discontinued, the growth rate, chondrocyte proliferation rate, and hypertrophic cell size all normalized, suggesting that estrogen has a reversible, suppressive effect on growth plate function. In addition, estrogen accelerated the normal loss of resting zone chondrocytes with age. This decrease in resting zone cell number did not appear to be due to apoptosis. However, it was maintained after the estrogen treatment stopped, suggesting that it represents irreversible depletion. The findings are consistent with the hypothesis that estrogen causes irreversible depletion of progenitor cells in the resting zone, thus irreversibly accelerating structural senescence and hastening epiphyseal fusion. In addition, estrogen reversibly suppresses growth plate function.


Subject(s)
Aging/physiology , Bone Development , Estradiol/physiology , Estrogens/physiology , Growth Plate/physiology , Animals , Cell Proliferation , Cell Size , Chondrocytes/cytology , Female , Growth Plate/cytology , Rabbits , Tibia/growth & development
9.
Pediatr Res ; 71(1): 32-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22289848

ABSTRACT

INTRODUCTION: In many normal tissues, proliferation rates decline postnatally, causing somatic growth to slow. Previous evidence suggests that this decline is due, in part, to decline in the expression of growth-promoting imprinted genes including Mest, Plagl1, Peg3, Dlk1, and Igf2. Embryonal cancers are composed of cells that maintain embryonic characteristics and proliferate rapidly in childhood. We hypothesized that the abnormal persistent rapid proliferation in embryonal cancers occurs in part because of abnormal persistent high expression of growth-promoting imprinted genes. RESULTS: Analysis of microarray data showed elevated expression of MEST, PLAGL1, PEG3, DLK1, and IGF2 in various embryonal cancers, especially rhabdomyosarcoma, as compared to nonembryonal cancers and normal tissues. Similarly, mRNA expression, assessed by real-time PCR, of MEST, PEG3, and IGF2 in rhabdomyosarcoma cell lines was increased as compared to nonembryonal cancer cell lines. Furthermore, siRNA-mediated knockdown of MEST, PLAGL1, PEG3, and IGF2 expression inhibited proliferation in Rh30 rhabdomyosarcoma cells. DISCUSSION: These findings suggest that the normal postnatal downregulation of growth-promoting imprinted genes fails to occur in some embryonal cancers, particularly rhabdomyosarcoma, and contributes to the persistent rapid proliferation of rhabdomyosarcoma cells and, more generally, that failure of the mechanisms responsible for normal somatic growth deceleration can promote tumorigenesis.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Genomic Imprinting , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Child , Humans , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Microarray Analysis , Proteins/genetics , Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
10.
Mech Ageing Dev ; 131(10): 641-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20816690

ABSTRACT

In mammals, proliferation is rapid in many tissues during early postnatal life, causing rapid somatic growth. This robust proliferation is then suppressed as the animal approaches adult size, bringing many tissues to a quiescent state where proliferation occurs only as needed to replace dying cells. Recent evidence suggests that the mechanism responsible for this decline in proliferation involves a multi-organ genetic program. We hypothesized that this genetic program continues to progress into later adult life, eventually suppressing proliferation to levels below those needed for tissue renewal, thus contributing to aging. We therefore used expression microarray to compare the temporal changes in gene expression that occur in adult mouse organs during aging to those occurring as juvenile proliferation slows. We found that many of the changes in gene expression that occur during the aging process originate during the period of juvenile growth deceleration. Bioinformatic analyses of the genes that show persistent decline in expression throughout postnatal life indicated that cell-cycle-related genes are strongly over-represented. Thus, the findings support the hypothesis that the genetic program that slows juvenile growth to limit body size persists into adulthood and thus may eventually hamper tissue maintenance and repair, contributing to the aging process.


Subject(s)
Aging/physiology , Cell Cycle/physiology , Gene Expression Regulation/physiology , Animals , Body Size/physiology , Gene Expression Profiling , Male , Mice , Oligonucleotide Array Sequence Analysis
11.
FASEB J ; 24(8): 3083-92, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20371622

ABSTRACT

Children grow, but adults do not. The cessation of growth in multiple organs is the end result of a progressive decline in cell proliferation beginning in early life. The mechanisms responsible for this growth deceleration are largely unknown. Using expression microarray and real-time PCR, we identified a common program of gene expression in lung, kidney, and liver during growth deceleration in juvenile rats. Gene ontology analyses and siRNA-mediated knockdown in vitro indicated that many of the down-regulated genes are growth promoting. Down-regulated genes in the program showed declining histone H3K4 trimethylation with age, implicating underlying epigenetic mechanisms. To investigate the physiological processes driving the genetic program, a tryptophan-deficient diet was used to temporarily inhibit juvenile growth in newborn rats for 4 wk. Afterward, microarray analysis showed that the genetic program had been delayed, implying that it is driven by body growth itself rather than age. Taken together, the findings suggest that growth in early life induces progressive down-regulation of a large set of proliferation-stimulating genes, causing organ growth to slow and eventually cease.


Subject(s)
Down-Regulation/genetics , Epigenesis, Genetic , Gene Regulatory Networks , Growth/genetics , Organ Size/genetics , Animals , Cell Proliferation , Gene Expression Profiling , Histones/metabolism , Kidney , Liver , Lung , Methylation , Rats
12.
Endocrinology ; 150(4): 1791-800, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19036884

ABSTRACT

Mammalian somatic growth is rapid in early postnatal life but then slows and eventually ceases in multiple tissues. We hypothesized that there exists a postnatal gene expression program that is common to multiple tissues and is responsible for this coordinate growth deceleration. Consistent with this hypothesis, microarray analysis identified more than 1600 genes that were regulated with age (1 vs. 4 wk) coordinately in kidney, lung, and heart of male mice, including many genes that regulate proliferation. As examples, we focused on three growth-promoting genes, Igf2, Mest, and Peg3, that were markedly down-regulated with age. In situ hybridization revealed that expression occurred in organ-specific parenchymal cells and suggested that the decreasing expression with age was due primarily to decreased expression per cell rather than a decreased number of expressing cells. The declining expression of these genes was slowed during hypothyroidism and growth inhibition (induced by propylthiouracil at 0-5 wk of age) in male rats, suggesting that the normal decline in expression is driven by growth rather than by age per se. We conclude that there exists an extensive genetic program occurring during postnatal life. Many of the involved genes are regulated coordinately in multiple organs, including many genes that regulate cell proliferation. At least some of these are themselves apparently regulated by growth, suggesting that, in the embryo, a gene expression pattern is established that allows for rapid somatic growth of multiple tissues, but then, during postnatal life, this growth leads to negative-feedback changes in gene expression that in turn slow and eventually halt somatic growth, thus imposing a fundamental limit on adult body size.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Animals , Computational Biology , Humans , Hypothyroidism/chemically induced , Hypothyroidism/genetics , In Situ Hybridization , Insulin-Like Growth Factor II/genetics , Kruppel-Like Transcription Factors/genetics , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Proteins/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
13.
Pediatr Res ; 64(3): 240-5, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18535488

ABSTRACT

In mammals, the rate of somatic growth is rapid in early postnatal life but then slows with age, approaching zero as the animal approaches adult body size. To investigate the underlying changes in cell-cycle kinetics, [methyl-H]thymidine and 5'-bromo-2'deoxyuridine were used to double-label proliferating cells in 1-, 2-, and 3-wk-old mice for four weeks. Proliferation of renal tubular epithelial cells and hepatocytes decreased with age. The average cell-cycle time did not increase in liver and increased only 1.7 fold in kidney. The fraction of cells in S-phase that will divide again declined approximately 10 fold with age. Concurrently, average cell area increased approximately 2 fold. The findings suggest that somatic growth deceleration primarily results not from an increase in cell-cycle time but from a decrease in growth fraction (fraction of cells that continue to proliferate). During the deceleration phase, cells appear to reach a proliferative limit and undergo their final cell divisions, staggered over time. Concomitantly, cells enlarge to a greater volume, perhaps because they are relieved of the size constraint imposed by cell division. In conclusion, a decline in growth fraction with age causes somatic growth deceleration and thus sets a fundamental limit on adult body size.


Subject(s)
Cell Cycle/physiology , Cell Proliferation , Kidney/cytology , Kidney/growth & development , Liver/cytology , Liver/growth & development , Animals , Animals, Newborn , Body Size , Bromodeoxyuridine , Cell Enlargement , Hydrogen , Male , Mice , Mice, Inbred C57BL , Organ Size , Thymidine , Time Factors , Tritium
14.
Am J Physiol Regul Integr Comp Physiol ; 295(1): R189-96, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18448610

ABSTRACT

In mammals, somatic growth is rapid in early postnatal life but decelerates with age and eventually halts, thus determining the adult body size of the species. This growth deceleration, which reflects declining proliferation, occurs simultaneously in multiple organs yet appears not to be coordinated by a systemic mechanism. We, therefore, hypothesized that growth deceleration results from a growth-limiting genetic program that is common to multiple tissues. Here, we identified a set of 11 imprinted genes that show down-regulation of mRNA expression with age in multiple organs. For these genes, Igf2, H19, Plagl1, Mest, Peg3, Dlk1, Gtl2, Grb10, Ndn, Cdkn1c, and SLC38a4, the declines show a temporal pattern similar to the decline in growth rate. All 11 genes have been implicated in the control of cell proliferation or somatic growth. Thus, our findings suggest that the declining expression of these genes contributes to coordinate growth deceleration in multiple tissues. We next hypothesized that the coordinate decline in expression of these imprinted genes is caused by altered methylation and consequent silencing of the expressed allele. Contrary to this hypothesis, the methylation status of the promoter regions of Mest, Peg3, and Plagl1 did not change with age. Our findings suggest that a set of growth-regulating imprinted genes is expressed at high levels in multiple tissues in early postnatal life, contributing to rapid somatic growth, but that these genes are subsequently downregulated in multiple tissues simultaneously, contributing to coordinate growth deceleration and cessation, thus imposing a fundamental limit on adult body size.


Subject(s)
Down-Regulation , Gene Expression Regulation, Developmental/physiology , Kidney/growth & development , Liver/growth & development , Lung/growth & development , Animals , Gene Expression Profiling , Kidney/metabolism , Liver/metabolism , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism
15.
Endocrinology ; 149(4): 1820-8, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18174286

ABSTRACT

Catch-up growth is defined as a linear growth rate greater than expected for age after a period of growth inhibition. We hypothesized that catch-up growth occurs because growth-inhibiting conditions conserve the limited proliferative capacity of growth plate chondrocytes, thus slowing the normal process of growth plate senescence. When the growth-inhibiting condition resolves, the growth plates are less senescent and therefore grow more rapidly than normal for age. To test this hypothesis, we administered propylthiouracil to newborn rats for 8 wk to induce hypothyroidism and then stopped the propylthiouracil to allow catch-up growth. In untreated controls, the growth plates underwent progressive, senescent changes in multiple functional and structural characteristics. We also identified genes that showed large changes in mRNA expression in growth plate and used these changes as molecular markers of senescence. In treated animals, after stopping propylthiouracil, these functional, structural, and molecular senescent changes were delayed, compared with controls. This delayed senescence included a delayed decline in longitudinal growth rate, resulting in catch-up growth. The findings demonstrate that growth inhibition due to hypothyroidism slows the developmental program of growth plate senescence, including the normal decline in the rate of longitudinal bone growth, thus accounting for catch-up growth.


Subject(s)
Growth Plate/physiology , Growth , Hypothyroidism/physiopathology , Aging/physiology , Animals , Female , Propylthiouracil/pharmacology , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley
16.
J Endocrinol ; 193(1): 75-84, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17400805

ABSTRACT

In the growth plate, stem-like cells in the resting zone differentiate into rapidly dividing chondrocytes of the proliferative zone and then terminally differentiate into the non-dividing chondrocytes of the hypertrophic zone. To explore the molecular switches responsible for this two-step differentiation program, we developed a microdissection method to isolate RNA from the resting (RZ), proliferative (PZ), and hypertrophic zones (HZ) of 7-day-old male rats. Expression of approximately 29,000 genes was analyzed by microarray and selected genes verified by real-time PCR. The analysis identified genes whose expression changed dramatically during the differentiation program, including multiple genes functionally related to bone morphogenetic proteins (BMPs). BMP-2 and BMP-6 were upregulated in HZ compared with RZ and PZ (30-fold each, P < 0.01 and 0.001 respectively). In contrast, BMP signaling inhibitors were expressed early in the differentiation pathway; BMP-3 and gremlin were differentially expressed in RZ (100- and 80-fold, compared with PZ, P < 0.001 and 0.005 respectively) and growth differentiation factor (GDF)-10 in PZ (160-fold compared with HZ, P < 0.001). Our findings suggest a BMP signaling gradient across the growth plate, which is established by differential expression of multiple BMPs and BMP inhibitors in specific zones. Since BMPs can stimulate both proliferation and hypertrophic differentiation of growth plate chondrocytes, these findings suggest that low levels of BMP signaling in the resting zone may help maintain these cells in a quiescent state. In the lower RZ, greater BMP signaling may help induce differentiation to proliferative chondrocytes. Farther down the growth plate, even greater BMP signaling may help induce hypertrophic differentiation. Thus, BMP signaling gradients may be a key mechanism responsible for spatial regulation of chondrocyte proliferation and differentiation in growth plate cartilage.


Subject(s)
Bone Morphogenetic Proteins/genetics , Chondrocytes/cytology , Gene Expression Regulation, Developmental , Growth Plate/metabolism , Animals , Bone Morphogenetic Protein 2 , Bone Morphogenetic Protein 3 , Bone Morphogenetic Protein 6 , Bone Morphogenetic Protein 7 , Chondrocytes/metabolism , Cytokines , Gene Expression Profiling , Glycoproteins/genetics , Growth Differentiation Factor 10 , Intercellular Signaling Peptides and Proteins/genetics , Male , Oligonucleotide Array Sequence Analysis , Proteins , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Transforming Growth Factor beta/genetics
17.
Bone ; 40(5): 1361-9, 2007 May.
Article in English | MEDLINE | ID: mdl-17337262

ABSTRACT

Longitudinal growth of long bones occurs at the growth plate by endochondral ossification. In the embryonic mouse, this process is regulated by Wnt signaling. Little is known about which members of the Wnt family of secreted signaling proteins might be involved in the regulation of the postnatal growth plate. We used microdissection and real-time PCR to study mRNA expression of Wnt genes in the mouse growth plate. Of the 19 known members of the Wnt family, only six were expressed in postnatal growth plate. Of these, Wnts -2b, -4, and -10b signal through the canonical beta-catenin pathway and Wnts -5a, -5b, and -11 signal through the noncanonical calcium pathway. The spatial expression for these six Wnts was remarkably similar, showing low mRNA expression in the resting zone, increasing expression as the chondrocytes differentiated into the proliferative and prehypertrophic state and then (except Wnt-2b) decreasing expression as the chondrocytes underwent hypertrophic differentiation. This overall pattern is broadly consistent with previous studies of embryonic mouse growth cartilage suggesting that Wnt signaling modulates chondrocyte proliferation and hypertrophic differentiation. We also found that mRNA expression of these Wnt genes persisted at similar levels at 4 weeks, when longitudinal bone growth is waning. In conclusion, we have identified for the first time the specific Wnt genes that are expressed in the postnatal mammalian growth plate. The six identified Wnt genes showed a similar pattern of expression during chondrocyte differentiation, suggesting overlapping or interacting roles in postnatal endochondral bone formation.


Subject(s)
Cell Differentiation , Chondrocytes/cytology , Chondrocytes/metabolism , Gene Expression Regulation , Growth Plate/cytology , Growth Plate/metabolism , Wnt Proteins/genetics , Aging/physiology , Animals , Animals, Newborn , Biomarkers , Cells, Cultured , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics
18.
Pediatr Res ; 60(3): 288-93, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16857774

ABSTRACT

p27/Kip1, a cyclin-dependent kinase inhibitor, negatively regulates proliferation of multiple cell types. The goal of this study was to assess the role of p27 in the spatial, temporal, and conditional regulation of growth plate chondrocyte proliferation. p27 mRNA expression was detected by real-time RT-PCR in all zones of the mouse growth plate at levels approximately 2-fold lower than in the surrounding bone. To determine whether this expression is physiologically important, we studied skeletal growth in 7-wk-old mice lacking a functional p27 gene. In these mice, body length was modestly increased and proliferation of proximal tibial growth plate chondrocytes was increased, but tibia length was not significantly greater than in controls. p27 ablation had no measurable effect on growth plate morphology. Treatment with dexamethasone inhibited longitudinal bone growth similarly in p27-deficient mice and controls, indicating that p27 is not required for the inhibitory effects of glucocorticoids on longitudinal growth. p27-deficient mice had increased width of the femoral diaphysis, suggesting that p27 acts normally to inhibit periosteal bone growth. In conclusion, our findings suggest that p27 has modest inhibitory effects on growth plate chondrocyte proliferation but is not required for the spatial or temporal regulation of proliferation or the conditional regulation by glucocorticoid.


Subject(s)
Cell Proliferation , Chondrocytes/metabolism , Cyclin-Dependent Kinase Inhibitor p27/physiology , Growth Plate/metabolism , Animals , Cyclin-Dependent Kinase Inhibitor p27/deficiency , Cyclin-Dependent Kinase Inhibitor p27/genetics , Glucocorticoids/physiology , Growth Plate/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/metabolism
19.
J Endocrinol ; 189(1): 27-36, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16614378

ABSTRACT

With age, the growth plate undergoes senescent changes that cause linear bone growth to slow and finally cease. Based on previous indirect evidence, we hypothesized that this senescent decline occurs because growth plate stem-like cells, located in the resting zone, have a finite proliferative capacity that is gradually depleted. Consistent with this hypothesis, we found that the proliferation rate in rabbit resting zone chondrocytes (assessed by continuous 5-bromo-2'-deoxy-uridine labeling) decreases with age, as does the number of resting zone chondrocytes per area of growth plate. Glucocorticoid excess slows growth plate senescence. To explain this effect, we hypothesized that glucocorticoid inhibits resting zone chondrocyte proliferation, thus conserving their proliferative capacity. Consistent with this hypothesis, we found that dexamethasone treatment decreased the proliferation rate of rabbit resting zone chondrocytes and slowed the numerical depletion of these cells. Estrogen is known to accelerate growth plate senescence. However, we found that estradiol cypionate treatment slowed resting zone chondrocyte proliferation. Our findings support the hypotheses that growth plate senescence is caused by qualitative and quantitative depletion of stem-like cells in the resting zone and that growth-inhibiting conditions, such as glucocorticoid excess, slow senescence by slowing resting zone chondrocyte proliferation and slowing the numerical depletion of these cells, thereby conserving the proliferative capacity of the growth plate. We speculate that estrogen might accelerate senescence by a proliferation-independent mechanism, or by increasing the loss of proliferative capacity per cell cycle.


Subject(s)
Aging/physiology , Chondrocytes/physiology , Growth Plate/physiology , Animals , Cell Division/drug effects , Cell Division/physiology , Chondrocytes/drug effects , Dexamethasone/pharmacology , Estradiol/pharmacology , Estrogens/physiology , Glucocorticoids/pharmacology , Immunohistochemistry/methods , Male , Rabbits , Stem Cells/physiology
20.
J Endocrinol ; 186(1): 241-9, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16002553

ABSTRACT

The overall body size of vertebrates is primarily determined by longitudinal bone growth at the growth plate. With age, the growth plate undergoes programmed senescence, causing longitudinal bone growth to slow and eventually cease. Indirect evidence suggests that growth plate senescence occurs because stem-like cells in the growth plate resting zone have a finite proliferative capacity that is gradually exhausted. Similar limits on replication have been observed when many types of animal cells are placed in cell culture, an effect known as the Hayflick phenomenon. However, we found that the number of population doublings of rabbit resting zone chondrocytes in culture did not depend on the age of the animal from which the cells were harvested, suggesting that the mechanisms limiting replicative capacity of growth plate chondrocytes in vivo are distinct from those in vitro. We also observed that the level of DNA methylation in resting zone chondrocytes decreased with age in vivo. This loss of methylation appeared to occur specifically with the slow proliferation of resting zone chondrocytes in vivo and was not observed with the rapid proliferation of proliferative zone chondrocytes in vivo (i.e. the level of DNA methylation did not change from the resting zone to the hypertrophic zone), with proliferation of chondrocytes in vitro, or with growth of the liver in vivo. Thus, the overall level of DNA methylation decreases during growth plate senescence. This finding is consistent with the hypothesis that the mechanism limiting replication of growth plate chondrocytes in vivo involves loss of DNA methylation and, thus, loss of DNA methylation might be a fundamental biological mechanism that limits longitudinal bone growth in mammals, thereby determining the overall adult size of the organism.


Subject(s)
Cartilage/growth & development , Cartilage/metabolism , DNA Methylation , Growth Plate/cytology , Aging , Alkaline Phosphatase/analysis , Animals , Cell Proliferation , Cells, Cultured , Cellular Senescence , Chondrocytes/cytology , Chondrocytes/metabolism , Female , Glycosaminoglycans/analysis , Growth Plate/metabolism , Histocytochemistry/methods , Liver/metabolism , Male , Rabbits , beta-Galactosidase/analysis
SELECTION OF CITATIONS
SEARCH DETAIL