Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38909650

ABSTRACT

Amphibians are suffering population declines due to a variety of factors such as increased ultraviolet radiation, climate change, habitat loss, pathogens, and pollution, or a combination of these. Such changes are associated with a reduction in the availability of water, exposing these animals to a greater risk of desiccation. In this context, understanding how dehydration can modulate the hypothalamic-pituitary-interrenal axis (HPI) and the immune response is an imperative question to predict how stressors can affect amphibian species. We investigated whether dehydration promotes long-lasting effects on toads' ability to respond to a consecutive stressor (restraint) even if the toads are allowed to rehydrate, as well as its effects on the immune function. We also tested the hypothesis that the toads showing more severe dehydration would exhibit lower responsiveness to restraint challenge, even if the animals were allowed to rehydrate. Individuals of R. ornata were dehydrated mildly and severely. Thereafter, they were submitted to a restraint stress challenge for 1 and 24 h. Our results show that dehydration increased hematocrit and CORT in R. ornata toads. The restraint induced an acute stress response in fully hydrated toads (increased CORT and neutrophil: lymphocyte ratio). Otherwise, restraint in moistened cloth bags allowed full rehydration in previously dehydrated toads and did not induce an additional increase in CORT, but those toads sustained elevated CORT up to 24 h of restraint. Also, these animals showed increased neutrophil: lymphocyte ratio and the phagocytic activity of blood cells, even when they rehydrated during restraint. These results point to a continuous activation of the HPA during dehydration and subsequent restraint, even when they recovered from the dehydration state. Also, acute stressors seem to promote immune cell redistribution and augmentation of immune cellular function in R. ornata toads.

2.
Gen Comp Endocrinol ; 354: 114517, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38615755

ABSTRACT

Theoretical models predict that elevated androgen and glucocorticoid levels in males during the reproductive season promote immunosuppression. However, some studies report decreased stress response during this season. This study investigated annual variation in plasma corticosterone and testosterone levels, plasma bacterial killing ability (BKA), and neutrophil to lymphocyte ratio (NLR) in free-living male toads (Rhinella icterica). Toads were sampled in the field (baseline) and 1 h-post restraint over five months, and we considered the occurrence of vocal activity. Baseline corticosterone, testosterone, and BKA showed higher values during the reproductive period, specifically in calling male toads. The NLR was similar throughout the year, but higher values were observed in calling toads. Moreover, baseline NLR and BKA were positively correlated with both testosterone and corticosterone, suggesting higher steroid levels during reproduction are associated with enhanced cellular and humoral immunity. Despite fluctuation of baseline values, post-restraint corticosterone levels remained uniform over the year, indicating that toads reached similar maximum values throughout the year. Testosterone levels decreased following restraint before one specific reproductive period but increased in response to restraint during and after this period. Meanwhile, BKA decreased due to restraint only after the reproductive period, indicating immune protection and resilience to immunosuppression by stressors associated with steroid hormones during reproduction. Our results show that baseline and stress-induced hormonal and immune regulation varies throughout the year and are associated with vocal activity in R. icterica males, indicating a possible compromise between steroids and immune function in anuran males.


Subject(s)
Corticosterone , Stress, Physiological , Testosterone , Vocalization, Animal , Animals , Male , Corticosterone/blood , Testosterone/blood , Vocalization, Animal/physiology , Stress, Physiological/physiology , Stress, Physiological/immunology , Bufonidae/blood , Bufonidae/physiology , Anura/blood , Anura/physiology , Anura/immunology
3.
J Exp Zool A Ecol Integr Physiol ; 335(6): 541-551, 2021 07.
Article in English | MEDLINE | ID: mdl-34018702

ABSTRACT

The inflammatory response is a complex process that relies on interactions among multiple endocrine and immune modulators. Studies incorporating time-related and integrative endocrine and immune responses to an immune challenge might shed light on the characterization of the phases of the inflammatory response in anurans. The present study investigated time-related changes (1, 3, 6, and 18 h post-challenge) in plasma corticosterone (CORT), melatonin (MEL) and testosterone (T) levels, phagocytosis percentage (PP), plasma bacterial killing ability (BKA), and neutrophil to lymphocyte ratio (NLR) following a lipopolysaccharide (LPS) immune challenge in Rhinella diptycha toads. Our results showed the response to LPS injection was characterized by increased CORT, PP, BKA, and NLR, with a concomitant decrease in plasma MEL and T. Increased CORT was more pronounced at 6 and 18 h, while increased NLR was observed only 18 h post-LPS injection. Meanwhile, plasma MEL and T decreased independently of the time post-LPS injection. Additionally, toads in better body condition showed higher BKA and PP in the LPS-treated group, regardless of the time postinjection. Our results show that toads (R. diptycha) were sensitive to the LPS challenge, mounting an inflammatory response, which started quickly (after 1 h) and developed over time and was influenced by body condition. These results demonstrate a time-related hormonal and immune variation as a consistent pattern of activation of the immune system, as well as of hypothalamic-pituitary-adrenal/interrenal and immune-pineal axes following an immune challenge more deeply studied in mammals, suggesting the evolutionary conservation of the regulatory mechanisms for tetrapod vertebrates.


Subject(s)
Bufonidae/immunology , Corticosterone/blood , Immunomodulation/drug effects , Lipopolysaccharides/toxicity , Melatonin/blood , Animals , Blood Bactericidal Activity , Inflammation/chemically induced , Inflammation/immunology , Lymphocytes/physiology , Male , Neutrophils/physiology , Phagocytosis , Testosterone/blood
4.
Article in English | MEDLINE | ID: mdl-33321177

ABSTRACT

Species introduced by human activities can alter the normal functioning of ecosystems promoting negative impacts on native biodiversity, as they can rapidly expand their population size, demonstrating phenotypic plasticity and possible adaptive capacity to novel environments. Twenty years ago, the guttural toad, Sclerophrys gutturalis, was introduced to a peri-urban area of Cape Town, with cooler and drier climatic characteristics than its native source population, Durban, South Africa. Our goal was to understand the phenotypic changes, in terms of physiology and immunity, of populations in native and novel environments. We evaluated body index (BI), field hydration level, plasma corticosterone levels (CORT), proportion of neutrophils: lymphocytes (N: L), plasma bacterial killing ability (BKA), and hematocrit (HTC) in the field, and after standardized stressors (dehydration and movement restriction) in males from the native and invasive populations. Toads from the invasive population presented lower BI and tended to show a lower field hydration state, which is consistent with living in the drier environmental conditions of Cape Town. Additionally, invasive toads also showed higher BKA and N:L ratio under field conditions. After exposure to stressors, invasive animals presented higher BKA than the natives. Individuals from both populations showed increased CORT after dehydration, an intense stressor for these animals. The highest BKA and N:L ratio in the field and after submission to stressors in the laboratory shows that the invasive population has a phenotype that might increase their fitness, leading to adaptive responses in the novel environment and, thus, favoring successful dispersion and population increase.


Subject(s)
Bufonidae/physiology , Dehydration/physiopathology , Introduced Species , Stress, Physiological , Water-Electrolyte Balance , Animals , Blood Bactericidal Activity , Bufonidae/immunology , Lymphocyte Count , Neutrophils/cytology , South Africa
5.
PLoS One ; 14(9): e0222856, 2019.
Article in English | MEDLINE | ID: mdl-31539413

ABSTRACT

Immune responses have been mostly studied at a specific time in anuran species. However, time-changes related to immunomodulation associated with glucocorticoid (GC) alterations following stressors and GC treatment are complex. The present study describes time-related changes in immune response and corticosterone (CORT) plasma levels following restraint challenge, short, mid and long-term captivity, and CORT exogenous administration by transdermal application (TA) in Rhinella ornata toads. We observed increased neutrophil: lymphocyte ratios after restraint challenge and CORT TA, without changes following short and mid-term captivity. Plasma bacterial killing ability was sustained in all treatments, except long-term captivity, with decreased values after 90 days under such conditions. Phagocytic activity of peritoneal cells increased after mid-term captivity, and the phytohemagglutinin swelling response was impaired in those animals treated with CORT TA for 20 consecutive days. Plasma CORT levels increased or were sustained after restraint challenge (depending on initial values), decreased following mid and long-term captivity (for those animals showing high CORT in the field) and increased after 20 days of CORT TA. By performing assessments of time-changes in immune processes and CORT plasma levels in R. ornata, we demonstrate immuno-enhancing effects following restraint, short and mid-term stressors, while long-term stressors and CORT TA promoted immunosuppression in these toads.


Subject(s)
Bufonidae/immunology , Corticosterone/immunology , Immunomodulation/immunology , Restraint, Physical , Stress, Physiological/immunology , Administration, Cutaneous , Animals , Bufonidae/physiology , Corticosterone/administration & dosage , Corticosterone/blood , Lymphocytes/immunology , Male , Neutrophils/immunology , Phagocytes/immunology , Time Factors
6.
J Exp Zool A Ecol Integr Physiol ; 331(3): 168-174, 2019 03.
Article in English | MEDLINE | ID: mdl-30569667

ABSTRACT

Availability of a humid environment is essential for amphibians to carry out their activities and most species are characterized by low resistance to evaporative water loss. Moreover, dehydration severely compromises amphibian locomotor and foraging performance, representing a relevant selective factor modulating the evolution of its integrative phenotype. In this way, we hypothesized that dehydration is a stressor for toads, inducing a stress response comparable to that elicited by another commonly used stress protocol: restraint challenge. We evaluated changes in plasma levels of corticosterone (CORT), hematocrit (Hct), and neutrophil:lymphocyte (N:L) ratio in adult males of Rhinella ornata, experimentally submitted to different levels of hydration (100%, 90%, and 80% of standard body mass) and to restraint challenge. Our results showed that dehydrating toads by 10% increase CORT to levels equivalent to that obtained by restraint. Moreover, toads dehydrated by 20% show a more pronounced increase in CORT, along with increased Hct and N:L ratio. In this way, we corroborated the hypothesis that dehydration triggers a pronounced stress response in R. ornata.


Subject(s)
Bufonidae/physiology , Dehydration , Stress, Physiological , Animals , Bufonidae/blood , Corticosterone/blood , Hematocrit , Lymphocytes , Male , Neutrophils , Restraint, Physical/adverse effects
7.
Article in English | MEDLINE | ID: mdl-27923708

ABSTRACT

The modulation exerted by glucocorticoids in physiological responses to stressors is essential for maintaining short-term homeostasis. However, highly frequent and/or prolonged activation of the hypothalamic-pituitary-adrenal/interrenal axis may inhibit processes that are important to long-term fitness and health, including reproduction and immunocompetence. The present study evaluates the response to adrenocorticotropic hormone (ACTH) injection in the adult male tree frog, Hypsiboas faber, as indicated by levels of plasma corticosterone (CORT), plasma testosterone (T), ocular melatonin (MEL), hematocrit and immune functioning (total leukocyte count and bacterial killing ability against Escherichia coli). All levels were measured 1, 3 and 6h after treatment. ACTH increased CORT levels whilst decreasing T and MEL levels at 1h post-treatment. 6h after ACTH injection, hematocrit and MEL levels increased. ACTH treatment did not significantly modulate the immune measures over the time-range sampled. The hormonal changes observed in response to ACTH treatment suggest that stressors could act as inhibitors of reproductive activity, as well as differentially modulating melatonin levels at different time-points.


Subject(s)
Adrenocorticotropic Hormone/pharmacology , Anura/metabolism , Corticosterone/blood , Immunity, Innate/drug effects , Melatonin/metabolism , Testosterone/blood , Adrenocorticotropic Hormone/administration & dosage , Animals , Anura/immunology , Male
8.
Article in English | MEDLINE | ID: mdl-27364933

ABSTRACT

During the breeding season, male anuran amphibians produce advertisement calls. Androgens play a permissive role in the activation of calling activity, which is often positively correlated to androgen plasma levels and testes mass. Additionally, calling effort is also correlated to corticosterone plasma levels (hereinafter referred to as CORT), which is associated with the mobilization of energy substrates to sustain the high energy flux associated with this activity. However, high CORT also has many immunosuppressive effects and might interfere with reproduction. Consequently, CORT might mediate a compromise between reproductive effort and immunocompetence in anurans. In the present study, we investigated the relationship between calling rate, immunocompetence, and CORT in Hypsiboas albopunctatus, a midsize anuran occurring in South America. To understand these relationships, we conducted focal observations of calling behavior, followed by blood collection for CORT measurements and evaluation of some immune parameters. Our results showed that individuals with larger testes had higher calling rates, and those with higher calling rates showed lower cell-mediated immune response (swelling response to phytohaemagglutinin), although these relationships were not mediated by CORT. Furthermore, males calling early in the evening showed high CORT, and individuals with lower body condition index had higher CORT. We conclude that calling activity shows a cost in terms of cellular immune response in H. albopunctatus, but this compromise does not appear to be mediated by glucocorticoid plasma levels.


Subject(s)
Anura/immunology , Anura/physiology , Immunocompetence , Vocalization, Animal/physiology , Androgens/physiology , Animals , Anura/blood , Behavior, Animal/physiology , Corticosterone/blood , Female , Immunity, Cellular , Immunocompetence/physiology , Male , Reproduction/physiology , Sexual Behavior, Animal/physiology
9.
PLoS One ; 10(4): e0121005, 2015.
Article in English | MEDLINE | ID: mdl-25831055

ABSTRACT

Glucocorticoid steroids modulate immunocompetence in complex ways with both immunoenhancing and immunosuppressive effects in vertebrates exposed to different stressors. Such bimodal effects have been associated with variation in duration and intensity of the stress response. Given that natural populations have been exposed to a multitude of stressors, a better understanding of the functional association between duration and intensity of the stress response, the resulting changes in glucocorticoid plasma levels and their impact on different aspects of immunocompetence emerges as a cornerstone for vertebrate conservation strategies. We investigated the effects of a restraint challenge (with and without movement restriction), long-term captivity, and transdermal corticosterone application on plasma levels of corticosterone (hereinafter referred to as CORT) and different parameters of innate immunocompetence in the male cururu toads (Rhinella icterica). We show that for R. icterica restraint for 24h proved to be a stressful condition, increasing CORT by 3-fold without consistent immunological changes. However, the application of a more intense stressor (restraint with movement restriction), for the same period, potentiated this response resulting in a 9-fold increase in CORT, associated with increase Neutrophil/Lymphocyte ratio (N:L) and a lower bacterial killing ability (BKA). Transdermal application of corticosterone efficiently mimics repeated acute stress response events, without changing the immune parameters even after 13 days of treatment. Interestingly, long-term captivity did not mitigate the stress response, since the toads maintained 3-fold increased CORT even after 3 months under these conditions. Moreover, long-term captivity in the same condition increased total leukocyte count (TLC) and generated an even greater decrease in BKA, suggesting that consequences of the stress response can be aggravated by time in captivity.


Subject(s)
Corticosterone/administration & dosage , Administration, Cutaneous , Animals , Bufo marinus/metabolism , Corticosterone/blood , Immunity, Innate , Immunocompetence , Immunoenzyme Techniques , Leukocyte Count , Lymphocytes/cytology , Male , Neutrophils/cytology , Restraint, Physical
SELECTION OF CITATIONS
SEARCH DETAIL
...