Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Insects ; 13(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35206785

ABSTRACT

The medical device is a nerve conduit entirely made of Bombyx mori silk fibroin. It is a tubular scaffold used for repairing peripheral nerve gaps, whose function is to protect the severed nerves and to favor their natural healing process. As any implantable medical device, the conduit must perform its function without causing adverse effects to the patient, meaning that it must be compliant with a range of regulations aimed at evaluating the risks related to the constituent materials and the manufacturing process, the toxicological impact of the processing aids, the biological safety, the functional performance, and the ability to sustain tissue regeneration processes. An exhaustive on-bench testing plan has been performed for the determination of the morphological, geometrical, physical, structural, and mechanical properties. For the toxicological analysis, the device was extracted with solvent and the number of leachable substances was determined by suitable chromatographic techniques. The biological safety was assessed by means of a set of tests, including cytotoxicity, delayed hypersensitivity, intracutaneous reactivity, pyrogen test, LAL (Limulus Amebocyte Lysate) test, acute systemic toxicity, and genotoxicity. Overall, the accumulated results demonstrated the suitability of the device for the intended use and supported the starting of a first-in-human clinical trial.

2.
Front Bioeng Biotechnol ; 10: 833157, 2022.
Article in English | MEDLINE | ID: mdl-35155396

ABSTRACT

The dissolution of Bombyx mori silk fibroin (SF) films in formic acid (FA) for the preparation of electrospinning dopes is widely exploited to produce electrospun SF scaffolds. The SILKBridge® nerve conduit is an example of medical device having in its wall structure an electrospun component produced from an FA spinning dope. Though highly volatile, residual FA remains trapped into the bulk of the SF nanofibers. The purpose of this work is to investigate the type and strength of the interaction between FA and SF in electrospun mats, to quantify its amount and to evaluate its possible toxicological impact on human health. The presence of residual FA in SF mats was detected by FTIR and Raman spectroscopy (new carbonyl peak at about 1,725 cm-1) and by solid state NMR, which revealed a new carbonyl signal at about 164.3 ppm, attributed to FA by isotopic 13C substitution. Changes occurred also in the spectral ranges of hydroxylated amino acids (Ser and Thr), demonstrating that FA interacted with SF by forming formyl esters. The total amount of FA was determined by HS-GC/MS analysis and accounted for 247 ± 20 µmol/g. The greatest part was present as formyl ester, a small part (about 3%) as free FA. Approximately 17% of the 1,500 µmol/g of hydroxy amino acids (Ser and Thr) theoretically available were involved in the formation of formyl esters. Treatment with alkali (Na2CO3) succeeded to remove the greatest part of FA, but not all. Alkali-treated electrospun SF mats underwent morphological, physical, and mechanical changes. The average diameter of the fibers increased from about 440 nm to about 480 nm, the mat shrunk, became stiffer (the modulus increased from about 5.5 MPa to about 7 MPa), and lost elasticity (the strain decreased from about 1 mm/mm to about 0.8 mm/mm). Biocompatibility studies with human adult dermal fibroblasts did not show significant difference in cell proliferation (313 ± 18 and 309 ± 23 cells/mm2 for untreated and alkali-treated SF mat, respectively) and metabolic activity. An in-depth evaluation of the possible toxicological impact of residual FA was made using the SILKBridge® nerve conduit as case study, following the provisions of the ISO 10993-1 standard. The Potential Patient Daily Intake, calculated from the total amount of FA determined by HS-GC/MS, was 2.4 mg/day and the Tolerable Exposure level was set to 35.4 mg/day. This allowed to obtain a value of the Margin of Safety of 15, indicating that the amount of FA left on SF mats after electrospinning does not raise concerns for human health.

3.
J Heart Lung Transplant ; 38(12): 1306-1316, 2019 12.
Article in English | MEDLINE | ID: mdl-31530458

ABSTRACT

BACKGROUND: Lung ischemia/reperfusion (IR) injury contributes to the development of severe complications in patients undergoing transplantation. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) exert beneficial actions comparable to those of MSCs without the risks of the cell-based strategy. This research investigated EV effects during IR injury in isolated rat lungs. METHODS: An established model of 180-minutes ex vivo lung perfusion (EVLP) was used. At 60 minutes EVs (n = 5) or saline (n = 5) were administered. Parallel experiments used labeled EVs to determine EV biodistribution (n = 4). Perfusate samples were collected to perform gas analysis and to assess the concentration of nitric oxide (NO), hyaluronan (HA), inflammatory mediators, and leukocytes. Lung biopsies were taken at 180 minutes to evaluate HA, adenosine triphosphate (ATP), gene expression, and histology. RESULTS: Compared with untreated lungs, EV-treated organs showed decreased vascular resistance and a rise of perfusate NO metabolites. EVs prevented the reduction in pulmonary ATP caused by IR. Increased medium-high-molecular-weight HA was detected in the perfusate and in the lung tissue of the IR + EV group. Significant differences in cell count on perfusate and tissue samples, together with induction of transcription and synthesis of chemokines, suggested EV-dependent modulation of leukocyte recruitment. EVs upregulated genes involved in the resolution of inflammation and oxidative stress. Biodistribution analysis showed that EVs were retained in the lung tissue and internalized within pulmonary cells. CONCLUSIONS: This study shows multiple novel EV influences on pulmonary energetics, tissue integrity, and gene expression during IR. The use of cell-free therapies during EVLP could constitute a valuable strategy for reconditioning and repair of injured lungs before transplantation.


Subject(s)
Extracellular Vesicles/transplantation , Lung/blood supply , Mesenchymal Stem Cells/ultrastructure , Reperfusion Injury/prevention & control , Animals , Phenotype , Rats , Reperfusion Injury/genetics
4.
Clin Sci (Lond) ; 131(12): 1301-1315, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28468951

ABSTRACT

In patients with non-alcoholic fatty liver disease (NAFLD), insulin resistance (IR) associates with fibrosis progression independently of the hepatic inflammation, but the mechanisms are still unclear. We modeled the independent contribution of inflammation (non-alcoholic steatohepatitis: NASH) by exploiting the methionine-choline deficient (MCD) diet, and that of IR by insulin receptor (InsR) haploinsufficiency (InsR+/-) in the pathogenesis of liver fibrosis in C57BL/6 mice. We confirmed the study findings in 96 patients with NAFLD. InsR+/- enhanced hepatic fat content and impaired hepatic insulin signaling leading to Forkhead box protein O1 (FoxO1) accumulation in MCD-fed mice. Remarkably, despite reduced inflammation and hampered transdifferentiation of hepatic stellate cells (HSCs), InsR+/- promoted hepatic fibrosis accumulation, which correlated with the induction of the Lysyl Oxidase Like 2 (Loxl2), involved in matrix stabilization. Loxl2 up-regulation was not a cell autonomous property of insulin resistant HSCs, but was dependent on microparticles (MPs) released specifically by insulin resistant hepatocytes (HEPs) exposed to fatty acids. The mechanism entailed FoxO1 up-regulation, as FoxO1 silencing normalized Loxl2 expression reversing fibrosis in InsR+/- MCD-fed mice. Loxl2 up-regulation was similarly detected during IR induced by obesity, but not by lipogenic stimuli (fructose feeding). Most importantly, LOXL2 up-regulation was observed in NAFLD patients with type 2 diabetes (T2D) and LOXL2 hepatic and circulating levels correlated with histological fibrosis progression. IR favors fibrosis deposition independently of the classic 'inflammation - HSC transdifferentiation' pathway. The mechanism entails a cross-talk between enhanced lipotoxicity in insulin resistant HEPs and Loxl2 production by HSCs, which was confirmed in patients with diabetes, thereby facilitating extracellular matrix (ECM) stabilization.


Subject(s)
Amino Acid Oxidoreductases/biosynthesis , Insulin Resistance , Liver Cirrhosis/enzymology , Liver/enzymology , Non-alcoholic Fatty Liver Disease/enzymology , Animals , Cell Proliferation , Cell Transdifferentiation , Cells, Cultured , Choline Deficiency/complications , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/pathology , Disease Models, Animal , Enzyme Induction , Extracellular Matrix/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Genetic Predisposition to Disease , Hepatic Stellate Cells/enzymology , Hepatic Stellate Cells/pathology , Hepatocytes/enzymology , Hepatocytes/pathology , Humans , Liver/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Methionine/deficiency , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Phenotype , Receptor, Insulin/deficiency , Receptor, Insulin/genetics , Signal Transduction
5.
PLoS One ; 11(12): e0167898, 2016.
Article in English | MEDLINE | ID: mdl-27936178

ABSTRACT

Ex vivo lung perfusion (EVLP) is a promising procedure for evaluation, reconditioning, and treatment of marginal lungs before transplantation. Small animal models can contribute to improve clinical development of this technique and represent a substantial platform for bio-molecular investigations. However, to accomplish this purpose, EVLP models must sustain a prolonged reperfusion without pharmacological interventions. Currently available protocols only partly satisfy this need. The aim of the present research was accomplishment and optimization of a reproducible model for a protracted rat EVLP in the absence of anti-inflammatory treatment. A 180 min, uninjured and untreated perfusion was achieved through a stepwise implementation of the protocol. Flow rate, temperature, and tidal volume were gradually increased during the initial reperfusion phase to reduce hemodynamic and oxidative stress. Low flow rate combined with open atrium and protective ventilation strategy were applied to prevent lung damage. The videos enclosed show management of the most critical technical steps. The stability and reproducibility of the present procedure were confirmed by lung function evaluation and edema assessment. The meticulous description of the protocol provided in this paper can enable other laboratories to reproduce it effortlessly, supporting research in the EVLP field.


Subject(s)
Lung/metabolism , Animals , Humans , Male , Oxidative Stress , Perfusion , Rats , Rats, Sprague-Dawley , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL