Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Ultrason Sonochem ; 108: 106960, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908076

ABSTRACT

Bipolar disorder is commonly treated with lithium carbonate. The concentration of lithium in the blood serum should be closely monitored in patients who require long-term lithium therapy. To date, no colorimetric method of detecting lithium ions has been reported using nanosensors. We have developed a novel chemosensor based on nanozyme (NZ) to address this clinical need. The GO-Ag2O NZs were synthesized by a sonochemical method and used as a colorimetric nanosensor to detect lithium ions in human blood serum (Li (I)). To characterize NZs, various techniques were employed, including XRD, FTIR, TEM, FESEM, EDX, Raman spectroscopy, BET, DLS, Zeta potential, and ICP-OES. According to TEM and FESEM images of GO-Ag2O, the nanoparticles (NPs) of Ag2O are uniformly distributed on the surface of 2D graphene oxide sheets. In addition, silver oxide nanoparticles exhibited a cubic morphology with an average size of 3.5 nm. We have examined the performance of the NZs in an aqueous medium and in human blood serum that contains Li (I). A colorimetric test revealed that NZs synthesized in the presence of ultrasound were more sensitive to Li (I). According to the linearity of the calibration curves' ranges, Li (I) has a limit of detection (LOD) of 0.01 µg/mL. Furthermore, it displayed a linear range between 0 and 12 µg/mL. GO-Ag2O NZs showed noticeable color changes from green to orange after exposure to Li (I). An incubation time of two minutes was found to be the most effective for sensing. This innovative approach provides a reliable method for monitoring lithium levels and ensuring patient safety during long-term lithium therapy for bipolar disorder.


Subject(s)
Graphite , Lithium , Oxides , Ultrasonic Waves , Graphite/chemistry , Lithium/blood , Lithium/chemistry , Oxides/chemistry , Humans , Silver Compounds/chemistry , Colorimetry/methods , Limit of Detection , Oxidation-Reduction , Blood Chemical Analysis/methods , Chemistry Techniques, Synthetic
2.
Environ Sci Pollut Res Int ; 27(9): 9364-9381, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31916163

ABSTRACT

In the present work, an ultrasound-assisted reverse-precipitation method was applied as a new approach for the synthesis of CuxO/Fe2O3/MoC. In the sonication method, a bath type sonicator as a simple, cost-effective, and low intensity sonicator was used. To determine the influence of ultrasonic waves on the morphology and application of nano-hybrid as nano-sorbent, it was also synthesized using the reverse precipitation method. The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), Zeta-potential measurement, and vibrating sample magnetometer (VSM) techniques. The XRD analysis confirmed that the sono-synthesized sample has higher crystallinity than the conventional one and CuO/Cu2O/MoC/Fe2O3 phase was obtained under ultrasound. According to the TEM and FESEM, sono-synthesized nanoparticles were rod-like with a width and length of 3 nm and 40 nm, respectively. Also, a well-dispersed shape and uniform morphology of nanoparticles were obtained using sonication. In comparison with the conventional nano-hybrid, this structure results in more void and accessible sites for adsorption of pollutants. The efficiency of resulting nanoparticles in adsorption of reactive dyes as a model of the pollutant was evaluated by sorption and sono-sorption processes. The sono-synthesized sample removed the pollutants more efficient than the conventional sample. The removal efficiencies were about 99% for the removal of reactive dyes using the sono-synthesized sample and sono-sorption method. Besides, determining factors including pH, pollutant concentration, temperature, and contact time were optimized in the sono-sorption and sorption processes. A colorimetric method based on RGB value was used to determine dye concentration in aqueous media. The images were taken by a smartphone and analyzed by ImageJ software. The accuracy of RGB results was confirmed by a UV-Vis spectrophotometer. Graphical abstract The figures on the left side show the FESEM images of nano-sorbent synthesized in the presence of ultrasonic irradiation (US method) and the absence of it (MS method). A well-dispersed shape and uniform morphology of nanoparticles were obtained using sonication. The scheme on the right side illustrates the process of sono-sorption for the removal of dyes and determination of their concentration using the colorimetric method. A colorimetric method based on RGB value was used to determine dye concentration in aqueous media. The graph shows the removal efficiencies of RY84 onto nanosorbent. The removal efficiencies were about 99% for the removal of reactive dye using the sono-synthesized sample and sono-sorption method.


Subject(s)
Coloring Agents , Smartphone , Adsorption , Colorimetry , Water
3.
RSC Adv ; 10(28): 16805-16816, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-35498867

ABSTRACT

The aim of this study is the accurate and rapid detection of acetaminophen (AP) for point-of-care (POC) clinical diagnosis. Acetaminophen overdose causes acute liver failure and currently there is a lack of rapid quantitative detection methods for this drug in the emergency room. Here, low-frequency sonication (20 kHz) in the presence of phosphomolybdic acid (PMo12) was used to reduce Au3+ to Au0 and stabilize the resulting spherical Au0 nanoparticles (herein AuNPs). These AuNPs@PMo12 were used as nano-probes for the selective detection of acetaminophen in the presence of other commercial drugs. The optical sensing method we describe is based on the aggregation of AuNPs@PMo12 in the presence of acetaminophen, which produces a red-shift in the absorption spectrum of the AuNPs@PMo12, which is characterised by a color change from red to purple that is visible to the naked eye. Furthermore, the quantitative determination of acetaminophen concentrations can be carried out using the eyedropper function in Microsoft's PowerPoint or open access ImageJ software, using RGB (red, green, and blue) values. To prove the feasibility of this novel nanosensor, the concentration of acetaminophen was measured in over-the-counter pharmaceutical tablets and in serum samples taken from mice. This simple sensing approach offers high stability, selectivity, rapid detection time, and cost saving compared to other detection methods, which therefore opens the way for the development of quantitative POC acetaminophen detection using polyoxometalate-stabilized metal nanoparticles.

5.
Artif Cells Nanomed Biotechnol ; 46(sup2): 594-606, 2018.
Article in English | MEDLINE | ID: mdl-29688064

ABSTRACT

The development of magnetic nanoparticles as delivery carriers to magnetically accumulate anticancer drug in cancer tissue has attracted immense interest. In the present study, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite core and silica shell were synthesized. The obtained MMSNs were characterized by DLS, XRD, FT-IR, TEM and VSM in order to investigate the nanoparticle characteristics. With the focus on in vivo validation of such magnetic drug delivery systems, we selected epirubicin (EPI) as the drug. The anticancer properties of EPI-loaded MMSNs were evaluated in a C-26 colon carcinoma model. Alongside monitoring of drug in the tissues with animal imaging system, the tissue distribution was also determined quantitavely. The average size of MMSNs determined with TEM images was about 18.68 ± 2.31 nm. The cellular uptake test indicated that geometric mean fluorescence intensity (MFI) of cells treated with MMSN + EPI in presence of external magnetic field was increasing 27% compared with free EPI. In addition, treatment with drug-loaded MMSNs with the aid of external magnetic gradient had significantly higher inhibition efficacy towards tumor growth than the free EPI treated mice. The targeted drug delivery through external magnet-attraction using EPI-loaded MMSNs resulted in high tumor cell uptake, which leads to elimination of cancer cells effectively.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Epirubicin/chemistry , Epirubicin/pharmacology , Magnetite Nanoparticles/chemistry , Silicon Dioxide/chemistry , Animals , Cell Line, Tumor , Drug Carriers/pharmacokinetics , Female , Mice , Models, Molecular , Molecular Conformation , Porosity , Tissue Distribution
6.
Environ Sci Pollut Res Int ; 25(9): 8268-8285, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29372526

ABSTRACT

Photocatalytic degradation of toxic organic pollutants in the wastewater using dispersed semiconductor nanophotocatalysts has a number of advantages such as high activity, cost effectiveness, and utilization of free solar energy. However, it is difficult to recover and recycle nanophotocatalysts since the fine dispersed nanoparticles are easily suspended in waters. Furthermore, a large amount of photocatalysts will lead to color contamination. Thus, it is necessary to prepare photocatalysts with easy separation for the reusable application. To take advantage of high photocatalysis activity and reusability, magnetic photocatalysts with separation function were utilized. In this review, the photocatalytic principle, structure, and application of the magnetic-semiconductor nanoheterostructure photocatalysts under solar light are evaluated. Graphical abstract ᅟ.


Subject(s)
Nanoparticles/chemistry , Solar Energy , Semiconductors , Sunlight , Wastewater , Water Purification
7.
Environ Sci Pollut Res Int ; 23(9): 8849-60, 2016 May.
Article in English | MEDLINE | ID: mdl-26810667

ABSTRACT

Magnetic polyoxometalate nanohybrid was prepared by the surface modification of γ-Fe2O3/SrCO3 nanoparticles with PW 12 O 40 (3 -) polyoxometalate (POM) anions. The results of Fourier transform infrared (FTIR) and energy-dispersive X-ray (EDX) confirm the presence of POM on the surface of γ-Fe2O3/SrCO3 nanoparticles. TEM results revealed the ellipsoid-like structure of nanohybrid which was 23 nm in length and 6 nm in width. The activity of the photocatalyst was investigated by the photocatalytic degradation of ibuprofen (IBP) in an aqueous solution under solar light. It was found that in comparison with the γ-Fe2O3/SrCO3, the degradation of IBP after 2-h exposure to the solar light irradiation was significantly higher for POM-γ-Fe2O3/SrCO3 nanohybrids. The degradation of IBP was enhanced by the addition of H2O2 to the air saturated solution, while the addition of NaHCO3 and isopropanol restricted the degradation process. In the presence of H2O2, the Fenton photocatalyst degradation under solar light irradiation led to relatively complete degradation of IBP. Furthermore, the photocatalytic activity and magnetization properties of this magnetic photocatalyst nanohybrid provide a promising solution for the degradation of water pollutants and photocatalyst recovery. Graphical Abstract Schematic illustration for preparation of POM-γ-Fe2O3/SrCO3 nanohybrid and photocatalytic reaction of IBP on POM-γ-Fe2O3/SrCO3 nanohybrid.


Subject(s)
Ibuprofen/chemistry , Models, Chemical , Nanostructures/chemistry , Sunlight , Tungsten Compounds/chemistry , Catalysis , Ferric Compounds , Hydrogen Peroxide/chemistry , Magnetics
8.
Ultrason Sonochem ; 19(4): 830-40, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22221536

ABSTRACT

A novel technique was used for the synthesis of manganese oxide nanocrystal by applying an external magnetic field (EMF) on the precursor solution before sonication with ultrasonic bath. The results were compared in the presence and absence of EMF. Manganese acetate solution as precursor was circulated by a pump at constant speed (7 rpm, equal to flow rate of 51.5 mL/min) in an EMF with intensity of 0.38 T in two exposure times (t(MF), 2h and 24h). Then, the magnetized solution was irradiated indirectly by ultrasonic bath in basic and neutral media. One experiment was designed for the effect of oxygen atmosphere in the case of magnetic treated solution in neutral medium. The as prepared samples were characterized with X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (HRTEM, TEM), energy-dispersive spectrum (EDS), and superconducting quantum interference device (SQUID) analysis. In neutral medium, the sonication of magnetized solution (t(MF), 24h) led mainly to a mixture of Mn(3)O(4) (hausmannite) and γ-MnOOH (manganite) and sonication of unmagnetized solution led to a pure Mn(3)O(4). In point of particle size, the larger and smaller size of nanoparticles was obtained with and without magnetic treatment, respectively. In addition, the EMF was retarded the nucleation process, accelerated the growth of the crystal, and increased the amount of rod-like structure especially in oxygen atmosphere. In basic medium, a difference was observed on the composition of the products between magnetic treated and untreated solution. For these samples, the magnetic measurements as a function of temperature were exhibited a reduction in ferrimagnetic temperature to T(c)=39K, and 40K with and without magnetic treatment, respectively. The ferrimagnetic temperature was reported for the bulk at T(c)=43K. A superparamagnetic behavior was observed at room temperature without any saturation magnetization and hysteresis in the measured field strength. The effect of EMF on the sample prepared in the basic medium was negligible but, in the case of neutral medium, the EMF affected the slope of the magnetization curves. The magnetization at room temperature was higher for the samples obtained in neutral medium without magnetic treatment. In addition, a horizontal shift loop was observed in neutral medium at low temperature.


Subject(s)
Magnetic Fields , Manganese Compounds/chemical synthesis , Nanoparticles/chemistry , Oxides/chemical synthesis , Ultrasonics , Manganese Compounds/chemistry , Oxides/chemistry , Particle Size , Surface Properties
9.
Ultrason Sonochem ; 15(4): 428-432, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17625945

ABSTRACT

This study presents the removal of Cd(II) from aqueous solution by the sorption process in the presence (sono-sorption) and absence (conventional method) of ultrasound. Batch experiments were conducted to study the main parameters such as sorbate concentration, amount of sorbent, contact time, and ultrasound intensity. In addition, the sorbate/sorbent concentration ratios were studied in two different ways: (a) in a constant sorbate concentration and variable amount of sorbent, (b) in a constant amount of sorbent and variable sorbate concentration. The results indicated that under proper conditions, there was a possibility to remove cadmium ion very fast and efficiently from aqueous solution. In addition, the intensity of ultrasound and the sorbate/sorbent concentration ratio were two important factors for the removal of this pollutant and therefore, this study was focused mostly on these two variables.


Subject(s)
Cadmium/chemistry , Cadmium/radiation effects , Adsorption , Indicators and Reagents , Particle Size , Solutions , Ultrasonics
10.
J Hazard Mater ; 137(2): 959-64, 2006 Sep 21.
Article in English | MEDLINE | ID: mdl-16716497

ABSTRACT

Sorption of Pb(II) as a toxic heavy metal ion, onto styrene-divinylbenzene co-polymer resin in the presence of ultrasound (sono-sorption) and in its absence (classical method) is presented in this work. Batch experiments were conducted to study the effect of the main parameters such as the amount of sorbent, concentration of sorbate, contact time, intensity of ultrasound and temperature on this sorption process. The equilibrium between liquid and solid phase was described by Langmuir model better than the Freundlich model. The time to reach equilibrium especially in the presence of ultrasound was very fast. This indicates that the resin mentioned has a high potential for the sorption of this pollutant ion. The isotherm constants were obtained under several different conditions. These constants were used in the calculation of the thermodynamic parameters of sorption. According to the results, the kinetics of sorption was in agreement with both pseudo-first-order and first-order reversible models.


Subject(s)
Lead/isolation & purification , Ultrasonics , Water Purification , Adsorption , Cations/pharmacokinetics , Lead/pharmacokinetics , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL