Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pharm Des ; 26(18): 2102-2108, 2020.
Article in English | MEDLINE | ID: mdl-32233996

ABSTRACT

Glioblastoma (GB) represents the most common and malignant form of glioma cancer. The Gold Standard in Glioblastoma is neurosurgical tumor removal and radiotherapy treatment in concomitant with temozolomide (TMZ). Unfortunately, because of tumor chemo and radio-resistance during this therapy, the patient's outcome remains very poor, with a median overall survival of about 14.6 months. Resveratrol is a natural polyphenol with a stilbene structure with chemopreventive and anticancer properties. In the present review, we evaluated data from preclinical studies conducted with resveratrol as a possible adjuvant during the standard protocol of GB. Resveratrol can reach the brain parenchyma at sub-micromolar concentrations when administrated through conventional routes. In this way, resveratrol reduces cell invasion and increases the efficacy of radiotherapy (radiosensitizer effects) and temozolomide. The molecular mechanism of the adjuvant action of resveratrol may depend upon the reduction of PI3K/AKT/NF-κB axis and downstream targets O-6-methylguanine-DNA methyltransferase (MGMT) and metalloproteinase-2 (MMP-2). It has been reported that redox signaling plays an important role in the regulation of autophagy. Resveratrol administration by External Carotid Artery (ECA) injection or by Lumbar Puncture (LP) can reach micromolar concentrations in tumor mass where it would inhibit tumor growth by STAT-3 dependent mechanisms. Preclinical evidences indicate a positive effect on the use of resveratrol as an adjuvant in anti-GB therapy. Ameliorated formulations of resveratrol with a favorable plasmatic profile for a better brain distribution and timing sequences during radio and chemotherapy could represent a critical aspect for resveratrol use as an adjuvant for a clinical evaluation.


Subject(s)
Brain Neoplasms , Glioblastoma , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Humans , Matrix Metalloproteinase 2 , Phosphatidylinositol 3-Kinases , Resveratrol/pharmacology
2.
Curr Pharm Des ; 26(18): 2096-2101, 2020.
Article in English | MEDLINE | ID: mdl-32175839

ABSTRACT

The human intermediate conductance calcium-activated potassium channel, KCa3.1, is involved in several pathophysiological conditions playing a critical role in cell secretory machinery and calcium signalling. The recent cryo-EM analysis provides new insights for understanding the modulation by both endogenous and pharmacological agents. A typical feature of this channel is the low open probability in saturating calcium concentrations and its modulation by potassium channel openers (KCOs), such as benzo imidazolone 1-EBIO, without changing calcium-dependent activation. In this paper, we proposed a model of KCOs action in the modulation of channel activity. The KCa3.1 channel has a very rich pharmacological profile with several classes of molecules that selectively interact with different binding sites of the channel. Among them, benzo imidazolones can be openers (positive modulators such as 1-EBIO, DC-EBIO) or blockers (negative modulators such as NS1619). Through computation modelling techniques, we identified the 1,4-benzothiazin-3-one as a promising scaffold to develop new KCa3.1 channel modulators. Further studies are needed to explore the potential use of 1-4 benzothiazine- 3-one in KCa3.1 modulation and its pharmacological application.


Subject(s)
Calcium Signaling , Intermediate-Conductance Calcium-Activated Potassium Channels , Binding Sites , Calcium/metabolism , Humans , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism
3.
Sci Rep ; 9(1): 12898, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31501459

ABSTRACT

Glioblastoma (GBM) is the most common and aggressive human brain cancer with low prognosis and therefore the discovery of new anticancer agents is needful. Sulfydryl reagents, such as silver, have been shown to induce membrane vesiculation in several cellular models through a mechanism that has not been yet completely clarified. Using U251 glioblastoma cells, we observed that silver induced irreversible bleb formation of the plasma membrane. This morphological event was anticipated by an increase of intracellular Ca2+ associated to extracellular Ca2+ influx. Accordingly, using patch-clamp whole cell recording during silver ion application, inward current/s (IAg) at -90 mV were detected and cells were permeable to Ca2+ and monovalent ions such as Na+. IAg activation and the intracellular Ca2+ increase promoted by silver ions (Ag+) were prevented by co-application of 20 µM cysteine and 300 µM DIDS (4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid), suggesting a critical role of thiol groups in the biological effects of silver ions. IAg was partially inhibited by 1 mM Gd3+, an unspecific inhibitor of cationic currents. Cysteine, Gd3+ and extracellular free Ca2+ solution completely abolished blebbing formation promoted by Ag+. Furthermore, extracellular Na+ ion replacement with TEA or an increase of extracellular tonicity by sucrose (100 mM) reduced both size and growth of membrane blebbing. Our data suggest that Ag+ promotes the formation necrotic blebs as consequence of the increase of intracellular Ca2+ and intracellular hydrostatic pressure associated to the activation of cationic currents. Since silver-induced blebs were less evident in benign glial human Müller MIO-M1 cells, silver compounds could represent new adjuvant to anticancer agents to improve GBM therapies.


Subject(s)
Cell Membrane/drug effects , Cell Membrane/pathology , Electrophysiological Phenomena/drug effects , Glioblastoma/pathology , Silver/chemistry , Silver/pharmacology , Calcium/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Hydrostatic Pressure , Intracellular Space/drug effects , Intracellular Space/metabolism , Sodium/metabolism
4.
Nutrients ; 10(12)2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30563110

ABSTRACT

Resveratrol, because of its low solubility in water and its high membrane permeability, is collocated in the second class of the biopharmaceutical classification system, with limited bioavailability due to its dissolution rate. Solid dispersion of resveratrol supported on Magnesium DiHydroxide (Resv@MDH) was evaluated to improve solubility and increase bioavailability of resveratrol. Fluorimetric microscopy analysis displays three types of microparticles with similar size: Type 1 that emitted preferably fluorescence at 445 nm with bandwidth of 50 nm, type 2 that emitted preferably fluorescence at 605 nm with bandwidth of 70 nm and type 3 that is non-fluorescent. Micronized pure resveratrol displays only microparticles type 1 whereas type 3 are associated to pure magnesium dihydroxide. Dissolution test in simulated gastric environment resveratrol derived from Resv@MDH in comparison to resveratrol alone displayed better solubility. A 3-fold increase of resveratrol bioavailability was observed after oral administration of 50 mg/kg of resveratrol from Resv@MDH in rabbits. We hypothesize that type 2 microparticles represent magnesium dihydroxide microparticles with a resveratrol shell and that they are responsible for the improved resveratrol solubility and bioavailability of Resv@MDH.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Magnesium Hydroxide/chemistry , Resveratrol/pharmacokinetics , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Biological Availability , Chemistry, Pharmaceutical , Particle Size , Rabbits , Resveratrol/administration & dosage , Resveratrol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...