Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
PLoS One ; 18(1): e0280616, 2023.
Article En | MEDLINE | ID: mdl-36662701

The meniscus is a fibrocartilaginous tissue that plays an essential role in load transmission, lubrication, and stabilization of the knee. Loss of meniscus function, through degeneration or trauma, can lead to osteoarthritis in the underlying articular cartilage. To perform its crucial function, the meniscus extracellular matrix has a particular organization, including collagen fiber bundles running circumferentially, allowing the tissue to withstand tensile hoop stresses developed during axial loading. Given its critical role in preserving the health of the knee, better understanding structure-function relations of the biomechanical properties of the meniscus is critical. The main objective of this study was to measure the compressive modulus of porcine meniscus using Atomic Force Microscopy (AFM); the effects of three key factors were investigated: direction (axial, circumferential), compartment (medial, lateral) and region (inner, outer). Porcine menisci were prepared in 8 groups (= 2 directions x 2 compartments x 2 regions) with n = 9 per group. A custom AFM was used to obtain force-indentation curves, which were then curve-fit with the Hertz model to determine the tissue's compressive modulus. The compressive modulus ranged from 0.75 to 4.00 MPa across the 8 groups, with an averaged value of 2.04±0.86MPa. Only direction had a significant effect on meniscus compressive modulus (circumferential > axial, p = 0.024), in agreement with earlier studies demonstrating that mechanical properties in the tissue are anisotropic. This behavior is likely the result of the particular collagen fiber arrangement in the tissue and plays a key role in load transmission capability. This study provides important information on the micromechanical properties of the meniscus, which is crucial for understanding tissue pathophysiology, as well as for developing novel treatments for tissue repair.


Menisci, Tibial , Meniscus , Animals , Swine , Menisci, Tibial/physiology , Anisotropy , Microscopy, Atomic Force , Collagen , Biomechanical Phenomena/physiology
2.
Methods Mol Biol ; 2625: 347-351, 2023.
Article En | MEDLINE | ID: mdl-36653656

Treatment of lipids endogenous to the aqueous humor of the eye could serve as a potential therapy to slow the progression of glaucoma. Herein, we describe the method to treat trabecular meshwork samples in vitro with lipids and characterize changes in the samples' stiffness.


Glaucoma , Trabecular Meshwork , Humans , Aqueous Humor , Lipids
3.
Exp Eye Res ; 212: 108768, 2021 11.
Article En | MEDLINE | ID: mdl-34534541

The mouse lens is frequently used both in vivo and ex vivo in ophthalmic research to model conditions affecting the human lens, such as presbyopia. The mouse lens has a delicate structure which is prone to damage and biomechanical changes both before and after extraction from the whole globe. When not properly controlled for, these changes can confound the biomechanical analysis of mouse lenses. In this study, atomic force microscopy microindentation was used to assess changes in the Young's Modulus of Elasticity of the mouse lens as a function of mouse age and postmortem time. Old mouse lenses measured immediately postmortem were significantly stiffer than young mouse lenses (p = 0.028). However, after 18 h of incubation, there was no measurable difference in lens stiffness between old and young mouse lenses (p = 0.997). This demonstrates the need for careful experimental control in experiments using the mouse lens, especially regarding postmortem time.


Aging , Lens Capsule, Crystalline/physiology , Lens, Crystalline/physiology , Microscopy, Atomic Force/methods , Animals , Elasticity , Female , Lens Capsule, Crystalline/cytology , Lens, Crystalline/cytology , Mice , Models, Animal
4.
Adv Funct Mater ; 30(25)2020 Jun 18.
Article En | MEDLINE | ID: mdl-32982626

Scaffolds made from biocompatible polymers provide physical cues to direct the extension of neurites and to encourage repair of damaged nerves. The inclusion of neurotrophic payloads in these scaffolds can substantially enhance regrowth and repair processes. However, many promising neurotrophic candidates are excluded from this approach due to incompatibilities with the polymer or with the polymer processing conditions. This work provides one solution to this problem by incorporating porous silicon nanoparticles (pSiNPs) that are pre-loaded with the therapeutic into a polymer scaffold during fabrication. The nanoparticle-drug-polymer hybrids are prepared in the form of oriented poly(lactic-co-glycolic acid) nanofiber scaffolds. We test three different therapeutic payloads: bpV(HOpic), a small molecule inhibitor of phosphatase and tensin homolog (PTEN); an RNA aptamer specific to tropomyosin-related kinase receptor type B (TrkB); and the protein nerve growth factor (NGF). Each therapeutic is loaded using a loading chemistry that is optimized to slow the rate of release of these water-soluble payloads. The drug-loaded pSiNP-nanofiber hybrids release approximately half of their TrkB aptamer, bpV(HOpic), or NGF payload in 2, 10, and >40 days, respectively. The nanofiber hybrids increase neurite extension relative to drug-free control nanofibers in a dorsal root ganglion explant assay.

5.
Biomater Sci ; 8(2): 591-606, 2020 Jan 21.
Article En | MEDLINE | ID: mdl-31859298

We report a water-soluble and non-toxic method to incorporate additional extracellular matrix proteins into gelatin hydrogels, while obviating the use of chemical crosslinkers such as glutaraldehyde. Gelatin hydrogels were fabricated using a range of gelatin concentrations (4%-10%) that corresponded to elastic moduli of approximately 1 kPa-25 kPa, respectively, a substrate stiffness relevant for multiple cell types. Microbial transglutaminase was then used to enzymatically crosslink a layer of laminin on top of gelatin hydrogels, resulting in 2-component gelatin-laminin hydrogels. Human induced pluripotent stem cell derived spinal spheroids readily adhered and rapidly extended axons on GEL-LN hydrogels. Axons displayed a more mature morphology and superior electrophysiological properties on GEL-LN hydrogels compared to the controls. Schwann cells on GEL-LN hydrogels adhered and proliferated normally, displayed a healthy morphology, and maintained the expression of Schwann cell specific markers. Lastly, skeletal muscle cells on GEL-LN hydrogels achieved long-term culture for up to 28 days without delamination, while expressing higher levels of terminal genes including myosin heavy chain, MyoD, MuSK, and M-cadherin suggesting enhanced maturation potential and myotube formation compared to the controls. Future studies will employ the superior culture outcomes of this hybrid substrate for engineering functional neuromuscular junctions and related organ on a chip applications.


Cross-Linking Reagents/metabolism , Gelatin/metabolism , Hydrogels/metabolism , Muscle Fibers, Skeletal/metabolism , Tissue Engineering , Transglutaminases/metabolism , Cells, Cultured , Cross-Linking Reagents/chemistry , Gelatin/chemistry , Humans , Hydrogels/chemistry , Muscle Fibers, Skeletal/chemistry , Spheroids, Cellular/chemistry , Spheroids, Cellular/metabolism , Transglutaminases/chemistry
6.
Mol Vis ; 25: 593-xxx, 2019.
Article En | MEDLINE | ID: mdl-31741652

Purpose: To quantify the partition coefficient and the diffusion coefficient of metal-carrier proteins in the human lens capsule as a function of age. Methods: Whole lenses from human donors were incubated overnight in a solution of fluorescently labeled transferrin, albumin, or ceruloplasmin. In the central plane of the capsule thickness, fluorescence recovery after photobleaching (FRAP) experiments were conducted to measure the diffusion of the protein within the lens capsule. The anterior portion of the lens was recorded before the FRAP experiments to locate the boundaries of the anterior lens capsule and to measure the partition coefficient of the labeled proteins. The partition coefficient (P), the time to half maximum recovery of the fluorescent intensity (τ1/2), and the diffusion coefficient (D) for each protein were analyzed as a function of donor age. Results: There was no statistically significant relationship between the half maximum recovery time or the diffusion coefficient and age for transferrin (molecular weight [MW]=79.5 kDa, τ1/2=17.26±4.840 s, D=0.17±0.05 µm2/s), serum albumin (MW=66.5 kDa, τ1/2=18.45±6.110 s, D=0.17±0.06 µm2/s), or ceruloplasmin (MW=120 kDa, τ1/2=36.57±5.660 s, D=0.08±0.01 µm2/s). As expected, the larger protein (ceruloplasmin) took longer to recover fluorescent intensity due to its slower movement within the lens capsule. The partition coefficient statistically significantly increased with age for each protein (Palbumin: 0.09-0.71, Pceruloplasmin: 0.42-0.95, Ptransferrin: 0.19-1.17). Conclusions: The diffusion of heavy-metal protein carriers within the anterior lens capsule is not dependent on age, but it is dependent on the size of the protein. The permeability of the lens capsule to these heavy-metal protein carriers increases with age, suggesting that there will be a higher concentration of heavy metals in the older lens. This behavior may favor the formation of cataract, because heavy metals enhance protein oxidation through the Fenton reaction.


Aging/physiology , Fluorescence Recovery After Photobleaching , Lens Capsule, Crystalline/diagnostic imaging , Adult , Aged , Albumins/metabolism , Ceruloplasmin/metabolism , Diffusion , Humans , Lens Capsule, Crystalline/metabolism , Middle Aged , Transferrin/metabolism , Young Adult
...