Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 21(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066035

ABSTRACT

The incorporation of Ce3+ ions in silicate glasses is a crucial issue for luminescence-based sensing applications. In this article, we report on silica glass preforms doped with cerium ions fabricated by modified chemical vapor deposition (MCVD) under different atmospheres in order to favor the Ce3+ oxidation state. Structural analysis and photophysical investigations are performed on the obtained glass rods. The preform fabricated under reducing atmosphere presents the highest photoluminescence (PL) quantum yield (QY). This preform drawn into a 125 µm-optical fiber, with a Ce-doped core diameter of about 40 µm, is characterized to confirm the presence of Ce3+ ions inside this optical fiber core. The fiber is then tested in an all-fibered X-ray dosimeter configuration. We demonstrate that this fiber allows the remote monitoring of the X-ray dose rate (flux) through a radioluminescence (RL) signal generated around 460 nm. The response dependence of RL versus dose rate exhibits a linear behavior over five decades, at least from 330 µGy(SiO2)/s up to 22.6 Gy(SiO2)/s. These results attest the potentialities of the MCVD-made Ce-doped material, obtained under reducing atmosphere, for real-time remote ionizing radiation dosimetry.

2.
Materials (Basel) ; 13(11)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32521681

ABSTRACT

Optically activated glasses are essential to the development of new radiation detection systems. In this study, a bulk glassy rod co-doped with Cu and Ce ions, was prepared via the sol-gel technique and was drawn at about 2000 °C into a cylindrical capillary rod to evaluate its optical and radioluminescence properties. The sample showed optical absorption and photoluminescence (PL) bands attributed to Cu+ and Ce3+ ions. The presence of these two ions inside the host silica glass matrix was also confirmed using PL kinetics measurements. The X-ray dose rate was remotely monitored via the radioluminescence (RL) signal emitted by the Cu/Ce scintillating sensor. In order to transport the optical signal from the irradiation zone to the detection located in the instrumentation zone, an optical transport fiber was spliced to the sample under test. This RL signal exhibited a linear behavior regarding the dose rate in the range at least between 1.1 mGy(SiO2)/s and 34 Gy(SiO2)/s. In addition, a spectroscopic analysis of this RL signal at different dose rates revealed that the same energy levels attributed to Cu+ and Ce3+ ions are involved in both the RL mechanism and the PL phenomenon. Moreover, integrated intensities of the RL sub-bands related to both Cu+ and Ce3+ ions depend linearly on the dose rate at least in the investigated range from 102 mGy(SiO2)/s up to 4725 mGy(SiO2)/s. The presence of Ce3+ ions also reduces the formation of HC1 color centers after X-ray irradiation.

3.
Opt Lett ; 45(7): 1946-1949, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32236049

ABSTRACT

This Letter reports on a large mode area pixelated Bragg fiber in which some high refractive index rods were replaced by boron-doped rods that allows polarization maintaining behavior while keeping single-mode behavior. The realized all-solid fiber has a core diameter of 35 µm. The fundamental mode is circular with a 25 µm mode field diameter around 1 µm wavelength, and the polarization extinction ratio reaches 30 dB. Finally, this fiber is single-mode and bendable up to a 20 cm radius with fundamental mode losses lower than 0.3 dB/m.

4.
Lab Chip ; 20(1): 175-184, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31796946

ABSTRACT

In third generation sequencing, the production of quality data requires the selection of molecules longer than ∼20 kbp, but the size selection threshold of most purification technologies is smaller than this target. Here, we describe a technology operated in a capillary with a tunable selection threshold in the range of 3 to 40 kbp controlled by an electric field. We demonstrate that the selection cut-off is sharp, the purification yield is high, and the purification throughput is scalable. We also provide an analytical model that the actuation settings of the filter. The selection of high molecular weight genomic DNA from the melon Cucumis melo L., a diploid organism of ∼0.45 Gbp, is then reported. Linked-read sequencing data show that the N50 phase block size, which scores the correct representation of two chromosomes, is enhanced by a factor of 2 after size selection, establishing the relevance and versatility of our technology.


Subject(s)
DNA/chemistry , Cucumis melo/genetics , DNA/genetics , Molecular Weight , Particle Size , Sequence Analysis, DNA
5.
Opt Lett ; 44(7): 1611-1614, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30933103

ABSTRACT

We propose and fabricate a novel ring-core photonic crystal fiber made of a circular ring core surrounded by a cladding constituted of air holes organized in a first circular ring surrounded by hexagonal ones. The fiber efficiently supports four different groups of orbital angular momentum (OAM) modes. The effective indices of spin-orbit aligned and spin-orbit anti-aligned modes in the same OAM modes group are separated by at least 2.13×10-3 at 1550 nm. The realized fiber is expected to be a good platform for applications involving OAM modes.

SELECTION OF CITATIONS
SEARCH DETAIL
...