Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Drug Metab Dispos ; 50(8): 1106-1118, 2022 08.
Article in English | MEDLINE | ID: mdl-35701182

ABSTRACT

Abrocitinib is an oral once-daily Janus kinase 1 selective inhibitor being developed for the treatment of moderate-to-severe atopic dermatitis. This study examined the disposition of abrocitinib in male participants following oral and intravenous administration using accelerator mass spectroscopy methodology to estimate pharmacokinetic parameters and characterize metabolite (M) profiles. The results indicated abrocitinib had a systemic clearance of 64.2 L/h, a steady-state volume of distribution of 100 L, extent of absorption >90%, time to maximum plasma concentration of ∼0.5 hours, and absolute oral bioavailability of 60%. The half-life of both abrocitinib and total radioactivity was similar, with no indication of metabolite accumulation. Abrocitinib was the main circulating drug species in plasma (∼26%), with 3 major monohydroxylated metabolites (M1, M2, and M4) at >10%. Oxidative metabolism was the primary route of elimination for abrocitinib, with the greatest disposition of radioactivity shown in the urine (∼85%). In vitro phenotyping indicated abrocitinib cytochrome P450 fraction of metabolism assignments of 0.53 for CYP2C19, 0.30 for CYP2C9, 0.11 for CYP3A4, and ∼0.06 for CYP2B6. The principal systemic metabolites M1, M2, and M4 were primarily cleared renally. Abrocitinib, M1, and M2 showed pharmacology with similar Janus kinase 1 selectivity, whereas M4 was inactive. SIGNIFICANCE STATEMENT: This study provides a detailed understanding of the disposition and metabolism of abrocitinib, a Janus kinase inhibitor for atopic dermatitis, in humans, as well as characterization of clearance pathways and pharmacokinetics of abrocitinib and its metabolites.


Subject(s)
Dermatitis, Atopic , Janus Kinase Inhibitors , Pyrimidines , Sulfonamides , Administration, Oral , Dermatitis, Atopic/drug therapy , Humans , Janus Kinase 1/antagonists & inhibitors , Janus Kinase Inhibitors/administration & dosage , Janus Kinase Inhibitors/pharmacokinetics , Janus Kinase Inhibitors/pharmacology , Male , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Sulfonamides/administration & dosage , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology
2.
Drug Metab Dispos ; 44(1): 102-14, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26512042

ABSTRACT

N-Methyl-2-[3-((E)-2-pyridin-2-yl-vinyl)-1H-indazol-6-ylsulfanyl]-benzamide (axitinib) is an oral inhibitor of vascular endothelial growth factor receptors 1-3, which is approved for the treatment of advanced renal cell cancer. Human [(14)C]-labeled clinical studies indicate axitinib's primary route of clearance is metabolism. The aims of the in vitro experiments presented herein were to identify and characterize the enzymes involved in axitinib metabolic clearance. In vitro biotransformation studies of axitinib identified a number of metabolites including an axitinib sulfoxide, several less abundant oxidative metabolites, and glucuronide conjugates. The most abundant NADPH- and UDPGA-dependent metabolites, axitinib sulfoxide (M12) and axitinib N-glucuronide (M7) were selected for phenotyping and kinetic study. Phenotyping experiments with human liver microsomes (HLMs) using chemical inhibitors and recombinant human cytochrome P450s demonstrated axitinib was predominately metabolized by CYP3A4/5, with minor contributions from CYP2C19 and CYP1A2. The apparent substrate concentration at half-maximal velocity (Km) and Vmax values for the formation of axitinib sulfoxide by CYP3A4 or CYP3A5 were 4.0 or 1.9 µM and 9.6 or 1.4 pmol·min(-1)·pmol(-1), respectively. Using a CYP3A4-specific inhibitor (Cyp3cide) in liver microsomes expressing CYP3A5, 66% of the axitinib intrinsic clearance was attributable to CYP3A4 and 15% to CYP3A5. Axitinib N-glucuronidation was primarily catalyzed by UDP-glucuronosyltransferase (UGT) UGT1A1, which was verified by chemical inhibitors and UGT1A1 null expressers, with lesser contributions from UGTs 1A3, 1A9, and 1A4. The Km and Vmax values describing the formation of the N-glucuronide in HLM or rUGT1A1 were 2.7 µM or 0.75 µM and 8.9 or 8.3 pmol·min(-1)·mg(-1), respectively. In summary, CYP3A4 is the major enzyme involved in axitinib clearance with lesser contributions from CYP3A5, CYP2C19, CYP1A2, and UGT1A1.


Subject(s)
Angiogenesis Inhibitors/metabolism , Cytochrome P-450 CYP3A/metabolism , Glucuronosyltransferase/metabolism , Imidazoles/metabolism , Indazoles/metabolism , Microsomes, Liver/enzymology , Protein Kinase Inhibitors/metabolism , Axitinib , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Female , Genotype , Glucuronides/metabolism , Glucuronosyltransferase/genetics , Humans , Inactivation, Metabolic , Kinetics , Male , Metabolic Clearance Rate , Microsomes, Liver/drug effects , Models, Biological , Oxidation-Reduction , Phenotype , Recombinant Proteins/metabolism , Substrate Specificity , Sulfoxides/metabolism
3.
Drug Metab Dispos ; 42(10): 1627-39, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25053618

ABSTRACT

The contribution of drug metabolites to the pharmacologic and toxicologic activity of a drug can be important; however, for a variety of reasons metabolites can frequently be difficult to synthesize. To meet the need of having samples of drug metabolites for further study, we have developed biosynthetic methods coupled with quantitative NMR spectroscopy (qNMR) to generate solutions of metabolites of known structure and concentration. These quantitative samples can be used in a variety of ways when a synthetic sample is unavailable, including pharmacologic assays, standards for in vitro work to help establish clearance pathways, and/or as analytical standards for bioanalytical work to ascertain exposure, among others. We illustrate five examples of metabolite biosynthesis and qNMR. The types of metabolites include one glucuronide and four oxidative products. Concentrations of the isolated metabolite stock solutions ranged from 0.048 to 8.3 mM, with volumes from approximately 0.04 to 0.150 ml in hexadeutarated dimethylsulfoxide. These specific quantified isolates were used as standards in the drug discovery setting as substrates in pharmacology assays, for bioanalytical assays to establish exposure, and in variety of routine absorption, distribution, metabolism, and excretion assays, such as protein binding and determining blood-to-plasma ratios. The methods used to generate these materials are described in detail with the objective that these methods can be generally used for metabolite biosynthesis and isolation.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Microsomes, Liver/metabolism , Pharmaceutical Preparations/metabolism , Pharmacology/methods , Reference Standards , Biotransformation , Female , Humans , Male , Molecular Structure , Pharmaceutical Preparations/chemistry
4.
Bioorg Med Chem Lett ; 24(4): 1144-7, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24461291

ABSTRACT

A design for the selective release of drug molecules in the liver was tested, involving the attachment of a representative active agent by an ester linkage to various 2-substituted 5-aminovaleric acid carbamates. The anticipated pathway of carboxylesterase-1-mediated carbamate cleavage followed by lactamization and drug release was frustrated by unexpectedly high sensitivity of the ester linkage toward hydrolysis by carboxylesterase-2 and other microsomal components.


Subject(s)
Amino Acids, Neutral/pharmacology , Carbamates/pharmacology , Carboxylesterase/antagonists & inhibitors , Carboxylic Ester Hydrolases/antagonists & inhibitors , Drug Design , Liver/drug effects , Amino Acids, Neutral/chemical synthesis , Amino Acids, Neutral/chemistry , Carbamates/chemical synthesis , Carbamates/chemistry , Carboxylesterase/metabolism , Carboxylic Ester Hydrolases/metabolism , Dose-Response Relationship, Drug , Humans , Liver/enzymology , Molecular Structure , Structure-Activity Relationship
5.
Drug Metab Dispos ; 40(5): 1051-65, 2012 May.
Article in English | MEDLINE | ID: mdl-22357286

ABSTRACT

The measurement of the effect of new chemical entities on human UDP-glucuronosyltransferase (UGT) marker activities using in vitro experimentation represents an important experimental approach in drug development to guide clinical drug-interaction study designs or support claims that no in vivo interaction will occur. Selective high-performance liquid chromatography-tandem mass spectrometry functional assays of authentic glucuronides for five major hepatic UGT probe substrates were developed: ß-estradiol-3-glucuronide (UGT1A1), trifluoperazine-N-glucuronide (UGT1A4), 5-hydroxytryptophol-O-glucuronide (UGT1A6), propofol-O-glucuronide (UGT1A9), and zidovudine-5'-glucuronide (UGT2B7). High analytical sensitivity permitted characterization of enzyme kinetic parameters at low human liver microsomal and recombinant UGT protein concentration (0.025 mg/ml), which led to a new recommended optimal universal alamethicin activation concentration of 10 µg/ml for microsomes. Alamethicin was not required for recombinant UGT incubations. Apparent enzyme kinetic parameters, particularly for UGT1A1 and UGT1A4, were affected by nonspecific binding. Unbound intrinsic clearance for UGT1A9 and UGT2B7 increased significantly after addition of 2% bovine serum albumin, with minimal changes for UGT1A1, UGT1A4, and UGT1A6. Eleven potential UGT and cytochrome P450 inhibitors were evaluated as UGT inhibitors, resulting in observation of nonselective UGT inhibition by chrysin, mefenamic acid, silibinin, tangeretin, ketoconazole, itraconazole, ritonavir, and verapamil. The pan-cytochrome P450 inhibitor, 1-aminobenzotriazole, minimally inhibited UGT activities and may be useful in reaction phenotyping of mixed UGT and cytochrome P450 substrates. These methods should prove useful in the routine assessments of the potential for new drug candidates to elicit pharmacokinetic drug interactions via inhibition of human UGT activities and the identification of UGT enzyme-selective chemical inhibitors.


Subject(s)
Alamethicin/chemistry , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Glucuronides/metabolism , Glucuronosyltransferase/antagonists & inhibitors , Glucuronosyltransferase/metabolism , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Enzyme Inhibitors/metabolism , Glucuronosyltransferase/genetics , Humans , In Vitro Techniques , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Molecular Structure , Protein Binding , Serum Albumin, Bovine/pharmacology , Substrate Specificity , Tandem Mass Spectrometry
6.
Nat Chem Biol ; 7(11): 810-7, 2011 Sep 25.
Article in English | MEDLINE | ID: mdl-21946276

ABSTRACT

Backbone N-methylation is common among peptide natural products and has a substantial impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides to generate compounds with drug-like membrane permeability and oral bioavailability. The selectivity and degree of N-methylation of the cyclic peptide was dependent on backbone stereochemistry, suggesting that conformation dictates the regiochemistry of the N-methylation reaction. The permeabilities of the N-methyl variants were corroborated by computational studies on a 1,024-member virtual library of N-methyl cyclic peptides. One of the most permeable compounds, a cyclic hexapeptide (molecular mass = 755 Da) with three N-methyl groups, showed an oral bioavailability of 28% in rat.


Subject(s)
Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacokinetics , Animals , Biological Availability , Chemistry, Pharmaceutical , Combinatorial Chemistry Techniques , Computer Simulation , Drug Discovery/methods , Male , Methylation , Molecular Structure , Peptides, Cyclic/chemistry , Rats , Structure-Activity Relationship
7.
Chem Res Toxicol ; 23(6): 1115-26, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20507089

ABSTRACT

The synthesis and structure-activity relationship studies on 5-trifluoromethylpyrido[4,3-d]pyrimidin-4(3H)-ones as antagonists of the human calcium receptor (CaSR) have been recently disclosed [ Didiuk et al. ( 2009 ) Bioorg. Med. Chem. Lett. 19 , 4555 - 4559 ). On the basis of its pharmacology and disposition attributes, (R)-2-(2-hydroxyphenyl)-3-(1-phenylpropan-2-yl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one (1) was considered for rapid advancement to first-in-human (FIH) trials to mitigate uncertainty surrounding the pharmacokinetic/pharmacodynamic (PK/PD) predictions for a short-acting bone anabolic agent. During the course of metabolic profiling, however, glutathione (GSH) conjugates of 1 were detected in human liver microsomes in an NADPH-dependent fashion. Characterization of the GSH conjugate structures allowed insight(s) into the bioactivation pathway, which involved CYP3A4-mediated phenol ring oxidation to the catechol, followed by further oxidation to the electrophilic ortho-quinone species. While the reactive metabolite (RM) liability raised concerns around the likelihood of a potential toxicological outcome, a more immediate program goal was establishing confidence in human PK predictions in the FIH study. Furthermore, the availability of a clinical biomarker (serum parathyroid hormone) meant that PD could be assessed side by side with PK, an ideal scenario for a relatively unprecedented pharmacologic target. Consequently, progressing 1 into the clinic was given a high priority, provided the compound demonstrated an adequate safety profile to support FIH studies. Despite forming identical RMs in rat liver microsomes, no clinical or histopathological signs prototypical of target organ toxicity were observed with 1 in in vivo safety assessments in rats. Compound 1 was also devoid of metabolism-based mutagenicity in in vitro (e.g., Salmonella Ames) and in vivo assessments (micronuclei induction in bone marrow) in rats. Likewise, metabolism-based studies (e.g., evaluation of detoxicating routes of clearance and exhaustive PK/PD studies in animals to prospectively predict the likelihood of a low human efficacious dose) were also conducted, which mitigated the risks of idiosyncratic toxicity to a large degree. In parallel, medicinal chemistry efforts were initiated to identify additional compounds with a complementary range of human PK predictions, which would maximize the likelihood of achieving the desired PD effect in the clinic. The back-up strategy also incorporated an overarching goal of reducing/eliminating reactive metabolite formation observed with 1. Herein, the collective findings from our discovery efforts in the CaSR program, which include the incorporation of appropriate derisking steps when dealing with RM issues are summarized.


Subject(s)
Anabolic Agents/chemistry , Anabolic Agents/metabolism , Osteoporosis/drug therapy , Pyridines/chemistry , Pyridines/metabolism , Pyrimidinones/chemistry , Pyrimidinones/metabolism , Receptors, Calcium-Sensing/antagonists & inhibitors , Anabolic Agents/adverse effects , Animals , Crystallography, X-Ray , Humans , Pyridines/adverse effects , Pyrimidinones/adverse effects , Rats
8.
ACS Med Chem Lett ; 1(5): 219-23, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-24900198

ABSTRACT

As part of a strategy to deliver short-acting calcium-sensing receptor (CaSR) antagonists, the metabolically labile thiomethyl functionality was incorporated into the zwitterionic amino alcohol derivative 3 with the hope of increasing human clearance through oxidative metabolism, while delivering a pharmacologically inactive sulfoxide metabolite. The effort led to the identification of thioanisoles 22 and 23 as potent and orally active CaSR antagonists with a rapid onset of action and short pharmacokinetic half-lives, which led to a rapid and transient stimulation of parathyroid hormone in a dose-dependent fashion following oral administration to rats. On the basis of the balance between target pharmacology, safety, and human disposition profiles, 22 and 23 were advanced as clinical candidates for the treatment of osteoporosis.

9.
Drug Metab Dispos ; 37(5): 999-1008, 2009 May.
Article in English | MEDLINE | ID: mdl-19196840

ABSTRACT

Prediction of the metabolic sites for new compounds, synthesized or virtual, is important in the rational design of compounds with increased resistance to metabolism. The aim of the present investigation was to use rational design together with MetaSite, an in silico tool for predicting metabolic soft spots, to synthesize compounds that retain their pharmacological effects but are metabolically more stable in the presence of cytochrome P450 (P450) enzymes. The model compound for these studies was the phenethyl amide (1) derivative of the nonsteroidal anti-inflammatory drug (NSAID) indomethacin. Unlike the parent NSAID, 1 is a potent and selective cyclooxygenase-2 (COX-2) inhibitor and nonulcerogenic anti-inflammatory agent in the rat. This pharmacological benefit is offset by the finding that 1 is very unstable in rat and human microsomes because of extensive P4503 A4/2D6-mediated metabolism on the phenethyl group, experimental observations that were accurately predicted by MetaSite. The information was used to design analogs with polar (glycinyl) and/or electron-deficient (fluorophenyl, fluoropyridinyl) amide substituents to reduce metabolism in 1. MetaSite correctly predicted the metabolic shift from oxidation on the amide substituent to O-demethylation for these compounds, whereas rat and human microsomal stability studies and pharmacokinetic assessments in the rat confirmed that the design tactics for improving pharmacokinetic attributes of 1 had worked in our favor. In addition, the fluorophenyl and pyridinyl amide derivatives retained the potent and selective COX-2 inhibition demonstrated with 1. Overall, the predictions from MetaSite gave useful information leading to the design of new compounds with improved metabolic properties.


Subject(s)
Cyclooxygenase 2 Inhibitors/pharmacokinetics , Indomethacin/analogs & derivatives , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Area Under Curve , Biotransformation , Computer Simulation , Cytochrome P-450 Enzyme System/metabolism , In Vitro Techniques , Indomethacin/pharmacokinetics , Male , Mass Spectrometry , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Rats , Rats, Sprague-Dawley , Spectrophotometry, Ultraviolet
10.
Bioorg Med Chem Lett ; 19(6): 1559-63, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19246199

ABSTRACT

The biochemical basis for S9-dependent mutagenic response of the 5-HT(2C) receptor agonist and diazinylpiperazine derivative 1 in the Salmonella Ames assay involves P450-mediated bioactivation to DNA-reactive quinone-methide, aldehyde and nitrone intermediates. Mechanistic information pertaining to the metabolism of 1 was used in the design of diazinylpiperazine 5 to eliminate the safety liability. While 5 was negative in the Ames assay, the compound retained the ability of 1 to form certain electrophilic intermediates. Plausible hypotheses that can collectively account for the differences in mutagenic response of the two piperazine analogs are discussed.


Subject(s)
Chemistry, Pharmaceutical/methods , Piperazines/chemistry , Serotonin 5-HT2 Receptor Agonists , Amides/chemistry , Chromatography/methods , Drug Design , Models, Chemical , Mutagenesis , Mutagenicity Tests , Mutagens , Mutation , NADP/chemistry , Piperazine , Reproducibility of Results , Salmonella/metabolism
11.
Bioorg Med Chem Lett ; 18(23): 6071-7, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18951788

ABSTRACT

The synthesis and SAR for a series of diaminopyrimidines as PYK2 inhibitors are described. Using a combination of library and traditional medicinal chemistry techniques, a FAK-selective chemical series was transformed into compounds possessing good PYK2 potency and 10- to 20-fold selectivity against FAK. Subsequent studies found that the majority of the compounds were positive in a reactive metabolite assay, an indicator for potential toxicological liabilities. Based on the proposed mechanism for bioactivation, as well as a combination of structure-based drug design and traditional medicinal chemistry techniques, a follow-up series of PYK2 inhibitors was identified that maintained PYK2 potency, FAK selectivity and HLM stability, yet were negative in the RM assay.


Subject(s)
Focal Adhesion Kinase 2/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Animals , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Disease Models, Animal , Drug Design , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Humans , Molecular Conformation , Molecular Structure , Osteoporosis/drug therapy , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
12.
Drug Metab Dispos ; 36(6): 1016-29, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18332080

ABSTRACT

In vitro metabolism/bioactivation of structurally related central nervous system agents nefazodone (hepatotoxin) and aripiprazole (nonhepatotoxin) were undertaken in human liver microsomes in an attempt to understand the differences in toxicological profile. NADPH-supplemented microsomal incubations of nefazodone and glutathione generated conjugates derived from addition of thiol to quinonoid intermediates. Inclusion of cyanide afforded cyano conjugates to iminium ions derived from alpha-carbon oxidation of the piperazine ring in nefazodone and downstream metabolites. Although the arylpiperazine motif in aripiprazole did not succumb to bioactivation, the dihydroquinolinone group was bioactivated via an intermediate monohydroxy metabolite to a reactive species, which was trapped by glutathione. Studies with synthetic dehydroaripiprazole metabolite revealed an analogous glutathione conjugate with molecular weight 2 Da lower. Based on the proposed structure of the glutathione conjugate(s), a bioactivation sequence involving aromatic ortho-or para-hydroxylation on the quinolinone followed by oxidation to a quinone-imine was proposed. P4503A4 inactivation studies in microsomes indicated that, unlike nefazodone, aripiprazole was not a time- and concentration-dependent inactivator of the enzyme. Overall, these studies reinforce the notion that not all drugs that are bioactivated in vitro elicit a toxicological response in vivo. A likely explanation for the markedly improved safety profile of aripiprazole (versus nefazodone) despite the accompanying bioactivation liability is the vastly improved pharmacokinetics (enhanced oral bioavailability, longer elimination half-life) due to reduced P4503A4-mediated metabolism/bioactivation, which result in a lower daily dose (5-20 mg/day) compared with nefazodone (200-400 mg/day). This attribute probably reduces the total body burden to reactive metabolite exposure and may not exceed a threshold needed for toxicity.


Subject(s)
Antidepressive Agents, Second-Generation/metabolism , Antipsychotic Agents/metabolism , Piperazines/metabolism , Quinolones/metabolism , Triazoles/metabolism , Aripiprazole , Cyanides/metabolism , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP2D6 Inhibitors , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors , Glutathione/metabolism , Humans , Microsomes, Liver/metabolism
13.
Br J Clin Pharmacol ; 64(4): 458-68, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17555467

ABSTRACT

AIMS: UGT1A1 and UGT2B7 are enzymes that commonly contribute to drug glucuronidation. Since genetic factors have been suggested to contribute to variability in activities and expression levels of these enzymes, a quantitative assessment of the influence of the major genotypes (UGT1A1*28 or UGT2B7*2) on enzyme activities was conducted. METHODS: Using a bank of microsomal samples from 59 human livers, the effect of UGT1A1*28 or UGT2B7*2 polymorphisms were investigated on rates of estradiol 3-glucuronidation (a marker of UGT1A1 enzyme activity) or zidovudine glucuronidation (a marker of UGT2B7 enzyme activity) and levels of immunoreactive protein for each enzyme. Glucuronidation rates for both enzymes were measured at K(m)/S(50) and 10 times K(m)/S(50) concentrations. RESULTS: UGT1A1 and UGT2B7 enzyme activities varied up to 16-fold and sixfold, respectively. Rates at K(m)/S(50) concentration closely correlated with rates at 10 times K(m)/S(50) concentration for both enzymes (but not at 1/10th K(m) for UGT2B7). Enzyme activities correlated with relative levels of immunoreactive protein for UGT1A1 and UGT2B7. Furthermore, rates of zidovudine glucuronidation correlated well with rates of glucuronidation of the UGT2B7 substrate gemcabene, but did not correlate with UGT1A1 enzyme activities. For the UGT1A1*28 polymorphism, consistent with levels of UGT1A1 immunoreactive protein, mean UGT1A1 activity was 2.5- and 3.2-fold lower for TA(6)/TA(7) (P < 0.05) and TA(7)/TA(7) (P < 0.001) genotypes in comparison with the TA(6)/TA(6) genotype. CONCLUSIONS: Relative to the observed 16-fold variability in UGT1A1 activity, these data indicate only a partial (approximately 40%) contribution of the UGT1A1*28 polymorphism to variability of interindividual differences in UGT1A1 enzyme activity. For the UGT2B7*2 polymorphism, genotype had no influence on immunoreactive UGT2B7 protein or the rate of 3'-azido-3'-deoxythymidine glucuronidation.


Subject(s)
Glucuronosyltransferase/genetics , Microsomes, Liver/enzymology , Polymorphism, Genetic/genetics , Adolescent , Adult , Aged , Female , Genotype , Glucuronosyltransferase/metabolism , Humans , Male , Middle Aged , Reverse Transcriptase Inhibitors/pharmacology , Zidovudine/pharmacology
14.
Drug Metab Dispos ; 35(8): 1315-24, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17470524

ABSTRACT

Gemfibrozil coadministration generally results in plasma statin area under the curve (AUC) increases, ranging from moderate (2- to 3-fold) with simvastatin, lovastatin, and pravastatin to most significant with cerivastatin (5.6-fold). Inhibition of statin glucuronidation has been postulated as a potential mechanism of interaction (Drug Metab Dispos 30:1280-1287, 2002). This study was conducted to determine the in vitro inhibitory potential of fibrates toward atorvastatin glucuronidation. [(3)H]Atorvastatin, atorvastatin, and atorvastatin lactone were incubated with human liver microsomes or human recombinant UDP-glucuronosyltransferases (UGTs) and characterized using liquid chromatography (LC)/tandem mass spectrometry and LC/UV/beta-radioactivity monitor/mass spectrometry. [(3)H]Atorvastatin yields a minor ether glucuronide (G1) and a major acyl glucuronide (G2) with subsequent pH-dependent lactonization of G2 to yield atorvastatin lactone. Atorvastatin lactonization best fit substrate inhibition kinetics (K(m) = 12 microM, V(max) = 74 pmol/min/mg, K(i) = 75 microM). Atorvastatin lactone yields a single ether glucuronide (G3). G3 formation best fit Michaelis-Menten kinetics (K(m) = 2.6 microM, V(max) = 10.6 pmol/min/mg). Six UGT enzymes contribute to atorvastatin glucuronidation with G2 and G3 formation catalyzed by UGTs 1A1, 1A3, 1A4, 1A8, and 2B7, whereas G1 formation was catalyzed by UGTs 1A3, 1A4, and 1A9. Gemfibrozil, fenofibrate, and fenofibric acid inhibited atorvastatin lactonization with IC(50) values of 346, 320, and 291 microM, respectively. Based on unbound fibrate concentrations at the inlet to the liver, these data predict a small increase in atorvastatin AUC (approximately 1.2-fold) after gemfibrozil coadministration and no interaction with fenofibrate. This result is consistent with recent clinical reports indicating minimal atorvastatin AUC increases ( approximately 1.2- to 1.4-fold) with gemfibrozil.


Subject(s)
Fenofibrate/analogs & derivatives , Fenofibrate/pharmacology , Gemfibrozil/pharmacology , Glucuronic Acid/metabolism , Heptanoic Acids/metabolism , Pyrroles/metabolism , Anticholesteremic Agents/metabolism , Anticholesteremic Agents/pharmacology , Area Under Curve , Atorvastatin , Catalysis/drug effects , Drug Interactions , Glucuronides/analysis , Glucuronides/metabolism , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Heptanoic Acids/chemistry , Heptanoic Acids/pharmacokinetics , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Kinetics , Lactones/analysis , Lactones/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Models, Biological , Molecular Structure , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Recombinant Proteins/metabolism , Tandem Mass Spectrometry , Uridine Diphosphate Glucuronic Acid/metabolism
15.
Chem Res Toxicol ; 19(5): 701-9, 2006 May.
Article in English | MEDLINE | ID: mdl-16696573

ABSTRACT

The importance of uridine 5'-diphosphate-glucuronosyltranferases (UGT) 2B15 and other UGT enzymes (1A1, 1A6, and 1A9) in glucuronidating acetaminophen (APAP) is demonstrated. The kinetics and contributions of various UGTs in glucuronidating APAP are presented using clinically and toxicologically relevant concentrations of the substrate. UGT 1A9 and UGT 2B15 contribute significantly toward glucuronidating APAP when incubations were conducted in either phosphate or Tris-HCl buffers at 0.1 and 1.0 mM substrate concentrations. At 10 mM APAP, UGT 1A9 is a significant enzyme responsible for metabolizing APAP in either one of the buffers. UGT 1A1 is the next most important enzyme in glucuronidating APAP at this high substrate concentration. The contribution of UGT 1A6 at 10 mM APAP concentration became obscured by similar relative activities exhibited by UGTs 1A7, 1A8, and 2B7. These observations may reflect the differences in kinetic parameters for APAP glucuronidation by the individual UGTs. UGT 1A1 demonstrated Hill kinetics while UGT 1A9 displayed Michaelis-Menten kinetics. Substrate inhibition kinetics is observed with UGT 1A6, UGT 2B15, and human liver microsomes. The substrate inhibition is confirmed by employing stable isotope-labeled APAP as the substrate, while APAP glucuronide is used to test for inhibition of d4-APAP glucuronide. The in vitro hepatotoxicity caused by APAP in combination with phenobarbital or phenytoin is demonstrated in this study. The inhibition of APAP glucuronidation by phenobarbital leads to an increase in APAP-mediated toxicity in human hepatocytes. The toxicity to hepatocytes was further increased by coadministering APAP with phenytoin and phenobarbital. This synergistic increase in toxicity is postulated to be due to inhibition of UGTs (1A6, 1A9, and 2B15) responsible for detoxifying APAP through the glucuronidation pathway.


Subject(s)
Acetaminophen/pharmacokinetics , Glucuronides/metabolism , Glucuronosyltransferase/metabolism , Analgesics, Non-Narcotic/pharmacokinetics , Biotransformation , Cells, Cultured , Hepatocytes/metabolism , Humans , Microsomes, Liver/metabolism
16.
Drug Metab Dispos ; 33(9): 1349-54, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15980101

ABSTRACT

The predominant metabolic pathway of gemcabene in humans is glucuronidation. The principal human UDP-glucuronosyltransferases (UGTs) involved in the glucuronidation of gemcabene were determined in this study. Glucuronidation of gemcabene was catalyzed by recombinant UGT1A3, recombinant UGT2B7, and recombinant UGT2B17, as well as by human liver microsomes (HLM). Gemcabene glucuronidation in recombinant UGTs and HLM followed non-Michaelis-Menten kinetics consistent with homotropic activation, but pharmacokinetics in humans were linear over the dose range tested (total plasma C(max), 0.06-0.88 mM). Gemcabene showed similar affinity (S(50)) for recombinant UGTs (0.92-1.45 mM) and HLM (1.37 mM). S-Flurbiprofen was identified as a more selective inhibitor of recombinant UGT2B7-catalyzed gemcabene glucuronidation (>23-fold lower IC(50)) when compared with recombinant UGT1A3- or recombinant UGT2B17-catalyzed gemcabene glucuronidation. The IC(50) for S-flurbiprofen inhibition of gemcabene glucuronidation was similar in HLM (60.6 microM) compared with recombinant UGT2B7 (27.4 microM), consistent with a major role for UGT2B7 in gemcabene glucuronidation in HLM. In addition, 5,6,7,3',4',5'-hexamethoxyflavone inhibited recombinant UGT1A3 and recombinant UGT2B17-catalyzed gemcabene glucuronidation (with 4-fold greater potency for recombinant UGT1A3) but did not inhibit gemcabene glucuronidation in HLM, suggesting that UGT1A3 and UGT2B17 do not contribute significantly to gemcabene glucuronidation. Reaction rates for gemcabene glucuronidation from a human liver bank correlated well (r(2)=0.722, P<0.0001; n=24) with rates of glucuronidation of the UGT2B7 probe substrate 3'-azido-3'-deoxythymidine. In conclusion, using the three independent experimental approaches typically used for cytochrome P450 reaction phenotyping, UGT2B7 is the major enzyme contributing to gemcabene glucuronidation in human liver microsomes.


Subject(s)
Caproates/metabolism , Glucuronosyltransferase/metabolism , Cells, Cultured , Enzyme Inhibitors/pharmacology , Glucuronosyltransferase/antagonists & inhibitors , Humans , Microsomes, Liver/enzymology , Minor Histocompatibility Antigens , Phenotype , Recombinant Proteins/metabolism , Zidovudine/analogs & derivatives , Zidovudine/metabolism
17.
Drug Metab Dispos ; 30(2): 135-40, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11792681

ABSTRACT

Bergamottin, a furanocoumarin isolated from grapefruit juice, was investigated for the ability to increase diazepam bioavailability and for its effect on cytochrome P450 (P450) enzymes in the beagle dog liver and intestine. To study the effect of bergamottin on diazepam pharmacokinetics, male beagle dogs were dosed with bergamottin (1 mg/kg) p.o. 0 or 2 h before p.o. diazepam (10 mg). In a second experiment, bergamottin (0.1 mg/kg) was dosed i.v. or p.o. 1 h before p.o. diazepam (10 mg). Plasma samples were collected over 24 h postdose, analyzed by liquid chromatography/mass tandem spectrometry, and diazepam pharmacokinetic parameters were determined. To study the effect of bergamottin on P450 enzymes, beagle dog liver and jejunum was harvested after a 10-day dosing regimen of bergamottin (1 mg/kg) p.o. per day; microsomes were prepared and analyzed for CYP3A12, CYP2B11, CYP1A1/2, and tolbutamide hydroxylase activity. Bergamottin predosing increased the plasma levels of diazepam as observed by C(max) (278.75 ng/ml versus 5.49 ng/ml) and the area under the curve [AUC((0-TLDC))] (247.69 versus 2.79 ng x hr/ml) in bergamottin versus placebo groups, respectively, indicating P450 enzyme inhibition. Diazepam plasma concentrations were increased to a similar level in the presence of i.v. and p.o. administered bergamottin. In hepatic microsomes, bergamottin treatment for 10 days reduced the activity of CYP3A12 by 50% and CYP1A1/2 by 75%. Tolbutamide hydroxylase activity did not change, and CYP2B11 activity was moderately induced. In jejunal microsomes, CYP3A12 activity doubled with bergamottin treatment. CYP2B11, CYP1A1/2 activity and tolbutamide hydroxylation was not detected. In conclusion, bergamottin is both an inhibitor and an inducer of P450 enzymes.


Subject(s)
Anti-Anxiety Agents/blood , Cytochrome P-450 Enzyme System/metabolism , Diazepam/blood , Dogs/metabolism , Furocoumarins/pharmacology , Administration, Oral , Animals , Anti-Anxiety Agents/pharmacology , Beverages , Citrus , Cytochrome P-450 Enzyme Inhibitors , Diazepam/administration & dosage , Diazepam/pharmacokinetics , Drug Interactions/physiology , Furocoumarins/administration & dosage , Furocoumarins/pharmacokinetics , Injections, Intravenous , Intestinal Mucosa/drug effects , Intestinal Mucosa/enzymology , Liver/drug effects , Liver/enzymology , Male , Plant Structures
SELECTION OF CITATIONS
SEARCH DETAIL
...