Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38806299

ABSTRACT

Mitochondrial genetic defects caused by whole-body mutations typically affect different tissues in different ways. Elucidating the molecular determinants that cause certain cell types to be primarily affected has become a critical research target within the field. We propose a differential activation of the integrated stress response as a potential contributor to this tissue specificity.

2.
Orphanet J Rare Dis ; 19(1): 148, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582886

ABSTRACT

BACKGROUND: Most patients suffering from Leber hereditary optic neuropathy carry one of the three classic pathologic mutations, but not all individuals with these genetic alterations develop the disease. There are different risk factors that modify the penetrance of these mutations. The remaining patients carry one of a set of very rare genetic variants and, it appears that, some of the risk factors that modify the penetrance of the classical pathologic mutations may also affect the phenotype of these other rare mutations. RESULTS: We describe a large family including 95 maternally related individuals, showing 30 patients with Leber hereditary optic neuropathy. The mutation responsible for the phenotype is a novel transition, m.3734A > G, in the mitochondrial gene encoding the ND1 subunit of respiratory complex I. Molecular-genetic, biochemical and cellular studies corroborate the pathogenicity of this genetic change. CONCLUSIONS: With the study of this family, we confirm that, also for this very rare mutation, sex and age are important factors modifying penetrance. Moreover, this pedigree offers an excellent opportunity to search for other genetic or environmental factors that additionally contribute to modify penetrance.


Subject(s)
DNA, Mitochondrial , Optic Atrophy, Hereditary, Leber , Humans , DNA, Mitochondrial/genetics , Optic Atrophy, Hereditary, Leber/genetics , Pedigree , Mutation/genetics , Phenotype
3.
Free Radic Biol Med ; 211: 114-126, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38092275

ABSTRACT

Mitochondrial ATAD3A is an ATPase Associated with diverse cellular Activities (AAA) domain containing enzyme, involved in the structural organization of the inner mitochondrial membrane and of increasing importance in childhood disease. In humans, two ATAD3A paralogs arose by gene duplication during evolution: ATAD3B and ATAD3C. Here we investigate the cellular activities of the ATAD3C paralog that has been considered a pseudogene. We detected unique ATAD3C peptides in HEK 293T cells, with expression similar to that in human tissues, and showed that it is an integral membrane protein that exposes its carboxy-terminus to the intermembrane space. Overexpression of ATAD3C, but not of ATAD3A, in fibroblasts caused a decrease in cell proliferation and oxygen consumption rate, and an increase of cellular ROS. This was due to the incorporation of ATAD3C monomers in ATAD3A complex in the mitochondrial membrane reducing its size. Consistent with a negative regulation of ATAD3A function in mitochondrial membrane organization, ATAD3C expression led to increased accumulation of respiratory chain dimeric CIII in the inner membrane, to the detriment to that assembled in respiratory supercomplexes. Our results demonstrate a negative dominant role of the ATAD3C paralog with implications for mitochondrial OXPHOS function and suggest that its expression regulates ATAD3A in the cell.


Subject(s)
Adenosine Triphosphatases , Mitochondrial Membranes , Humans , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/chemistry , ATPases Associated with Diverse Cellular Activities/metabolism , Gene Duplication , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism
4.
Ageing Res Rev ; 86: 101880, 2023 04.
Article in English | MEDLINE | ID: mdl-36773760

ABSTRACT

Numerous pesticides are inhibitors of the oxidative phosphorylation system. Oxidative phosphorylation dysfunction adversely affects neurogenesis and often accompanies Parkinson disease. Since brain development occurs mainly in the prenatal period, early exposure to pesticides could alter the development of the nervous system and increase the risk of Parkinson disease. Different rodent models have been used to confirm this hypothesis. However, more precise considerations of the selected strain, the xenobiotic, its mode of administration, and the timing of animal analysis, are necessary to resemble the model to the human clinical condition and obtain more reliable results.


Subject(s)
Parkinson Disease , Pesticides , Animals , Pregnancy , Female , Humans , Parkinson Disease/etiology , Pesticides/toxicity , Neurogenesis/physiology
5.
J Clin Med ; 8(1)2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30634555

ABSTRACT

Mitochondrial diseases (MD) are a group of genetic and acquired disorders which present significant diagnostic challenges. Here we report the disease characteristics of a large cohort of pediatric MD patients (n = 95) with a definitive genetic diagnosis, giving special emphasis on clinical muscle involvement, biochemical and histopathological features. Of the whole cohort, 51 patients harbored mutations in nuclear DNA (nDNA) genes and 44 patients had mutations in mitochondrial DNA (mtDNA) genes. The nDNA patients were more likely to have a reduction in muscle fiber succinate dehydrogenase (SDH) stains and in SDH-positive blood vessels, while a higher frequency of mtDNA patients had ragged red (RRF) and blue fibers. The presence of positive histopathological features was associated with ophthalmoplegia, myopathic facies, weakness and exercise intolerance. In 17 patients younger than two years of age, RRF and blue fibers were observed only in one case, six cases presented cytochrome c oxidase (COX) reduction/COX-fibers, SDH reduction was observed in five and all except one presented SDH-positive blood vessels. In conclusion, muscle involvement was a frequent finding in our series of MD patients, especially in those harboring mutations in mtDNA genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...