Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48
1.
AIDS ; 2023 Dec 04.
Article En | MEDLINE | ID: mdl-38051788

OBJECTIVE: The primary objective of the study was to assess the immunogenicity of an HIV-1 Gag conserved element DNA vaccine (p24CE DNA) in people with HIV (PWH) receiving suppressive antiretroviral therapy (ART). DESIGN: AIDS Clinical Trials Group A5369 was a phase I/IIa, randomized, double-blind, placebo-controlled study of PWH receiving ART with plasma HIV-1 RNA less than 50 copies/ml, current CD4+ T-cell counts greater than 500 cells/µl, and nadir CD4+ T-cell counts greater than 350 cells/µl. METHODS: The study enrolled 45 participants randomized 2 : 1 : 1 to receive p24CE DNA vaccine at weeks 0 and 4, followed by p24CE DNA admixed with full-length p55Gag DNA vaccine at weeks 12 and 24 (arm A); full-length p55Gag DNA vaccine at weeks 0, 4, 12, and 24 (arm B); or placebo at weeks 0, 4, 12, and 24 (arm c). The active and placebo vaccines were administered by intramuscular electroporation. RESULTS: There was a modest, but significantly greater increase in the number of conserved elements recognized by CD4+ and/or CD8+ T cells in arm A compared with arm C (P = 0.014). The percentage of participants with an increased number of conserved elements recognized by T cells was also highest in arm A (8/18, 44.4%) vs. arm C (0/10, 0.0%) (P = 0.025). There were no significant differences between treatment groups in the change in magnitude of responses to total conserved elements. CONCLUSION: A DNA-delivered HIV-1 Gag conserved element vaccine boosted by a combination of this vaccine with a full-length p55Gag DNA vaccine induced a new conserved element-directed cellular immune response in approximately half the treated PWH on ART.

2.
Front Immunol ; 14: 1292568, 2023.
Article En | MEDLINE | ID: mdl-38090597

Introduction: Cytokines and chemokines play an important role in shaping innate and adaptive immunity in response to infection and vaccination. Systems serology identified immunological parameters predictive of beneficial response to the BNT162b2 mRNA vaccine in COVID-19 infection-naïve volunteers, COVID-19 convalescent patients and transplant patients with hematological malignancies. Here, we examined the dynamics of the serum cytokine/chemokine responses after the 3rd BNT162b2 mRNA vaccination in a cohort of COVID-19 infection-naïve volunteers. Methods: We measured serum cytokine and chemokine responses after the 3rd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in COVID-19 infection-naïve individuals by a chemiluminescent assay and ELISA. Anti-Spike binding antibodies were measured by ELISA. Anti-Spike neutralizing antibodies were measured by a pseudotype assay. Results: Comparison to responses found after the 1st and 2nd vaccinations showed persistence of the coordinated responses of several cytokine/chemokines including the previously identified rapid and transient IL-15, IFN-γ, CXCL10/IP-10, TNF-α, IL-6 signature. In contrast to the transient (24hrs) effect of the IL-15 signature, an inflammatory/anti-inflammatory cytokine signature (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß, CXCL8/IL-8, IL-1Ra) remained at higher levels up to one month after the 2nd and 3rd booster vaccinations, indicative of a state of longer-lasting innate immune change. We also identified a systemic transient increase of CXCL13 only after the 3rd vaccination, supporting stronger germinal center activity and the higher anti-Spike antibody responses. Changes of the IL-15 signature, and the inflammatory/anti-inflammatory cytokine profile correlated with neutralizing antibody levels also after the 3rd vaccination supporting their role as immune biomarkers for effective development of vaccine-induced humoral responses. Conclusion: These data revealed that repeated SARS-Cov-2 BNT162b2 mRNA vaccination induces both rapid transient as well as longer-lasting systemic serum cytokine changes associated with innate and adaptive immune responses. Clinical trial registration: Clinicaltrials.gov, identifier NCT04743388.


COVID-19 , Cytokines , Humans , BNT162 Vaccine , Interleukin-15 , SARS-CoV-2 , COVID-19/prevention & control , Adaptive Immunity , Vaccination , Anti-Inflammatory Agents
4.
iScience ; 26(2): 105929, 2023 Feb 17.
Article En | MEDLINE | ID: mdl-36685042

We employed a dose-escalation regimen in rhesus macaques to deliver glycosylated IL-7, a cytokine critical for development and maintenance of T lymphocytes. IL-7 increased proliferation and survival of T cells and triggered several chemokines and cytokines. Induction of CXCL13 in lymph nodes (LNs) led to a remarkable increase of B cells in the LNs, proliferation of germinal center follicular T helper cells and elevated IL-21 levels suggesting an increase in follicle activity. Transcriptomics analysis showed induction of IRF-7 and Flt3L, which was linked to increased frequency of circulating plasmacytoid dendritic cells (pDCs) on IL-7 treatment. These pDCs expressed higher levels of CCR7, homed to LNs, and were associated with upregulation of type-1 interferon gene signature and increased production of IFN-α2a on TLR stimulation. Superior effects and dose-sparing advantage was observed by the step-dose regimen. Thus, IL-7 treatment leads to systemic effects involving both lymphoid and myeloid compartments.

5.
Cancers (Basel) ; 14(23)2022 Nov 25.
Article En | MEDLINE | ID: mdl-36497296

Patients with symptomatic monoclonal gammopathies have impaired humoral responses to COVID-19 vaccination. Their ability to recognize SARS-CoV-2 Omicron variants is of concern. We compared the response to BNT162b2 mRNA vaccinations of patients with multiple myeloma (MM, n = 60) or Waldenstrom's macroglobulinemia (WM, n = 20) with healthy vaccine recipients (n = 37). Patient cohorts on active therapy affecting B cell development had impaired binding and neutralizing antibody (NAb) response rate and magnitude, including several patients lacking responses, even after a 3rd vaccine dose, whereas non-B cell depleting therapies had a lesser effect. In contrast, MM and WM cohorts off-therapy showed increased NAb with a broad response range. ELISA Spike-Receptor Binding Domain (RBD) Ab titers in healthy vaccine recipients and patient cohorts were good predictors of the ability to neutralize not only the original WA1 but also the most divergent Omicron variants BA.4/5. Compared to WA1, significantly lower NAb responses to BA.4/5 were found in all patient cohorts on-therapy. In contrast, the MM and WM cohorts off-therapy showed a higher probability to neutralize BA.4/5 after the 3rd vaccination. Overall, the boost in NAb after the 3rd dose suggests that repeat vaccination of MM and WM patients is beneficial even under active therapy.

6.
Front Immunol ; 13: 899972, 2022.
Article En | MEDLINE | ID: mdl-35693807

Immunocompromised individuals including patients with hematological malignancies constitute a population at high risk of developing severe disease upon SARS-CoV-2 infection. Protection afforded by vaccination is frequently low and the biology leading to altered vaccine efficacy is not fully understood. A patient cohort who had received bone marrow transplantation or CAR-T cells was studied following a 2-dose BNT162b2 mRNA vaccination and compared to healthy vaccine recipients. Anti-Spike antibody and systemic innate responses were compared in the two vaccine cohorts. The patients had significantly lower SARS-CoV-2 Spike antibodies to the Wuhan strain, with proportional lower cross-recognition of Beta, Delta, and Omicron Spike-RBD proteins. Both cohorts neutralized the wildtype WA1 and Delta but not Omicron. Vaccination elicited an innate cytokine signature featuring IFN-γ, IL-15 and IP-10/CXCL10, but most patients showed a diminished systemic cytokine response. In patients who failed to develop antibodies, the innate systemic response was dominated by IL-8 and MIP-1α with significant attenuation in the IFN-γ, IL-15 and IP-10/CXCL10 signature response. Changes in IFN-γ and IP-10/CXCL10 at priming vaccination and IFN-γ, IL-15, IL-7 and IL-10 upon booster vaccination correlated with the Spike antibody magnitude and were predictive of successful antibody development. Overall, the patients showed heterogeneous adaptive and innate responses with lower humoral and reduced innate cytokine responses to vaccination compared to naïve vaccine recipients. The pattern of responses described offer novel prognostic approaches for potentiating the effectiveness of COVID-19 vaccination in transplant patients with hematological malignancies.


COVID-19 , Hematologic Neoplasms , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Chemokine CXCL10 , Cytokines , Hematologic Neoplasms/therapy , Humans , Interleukin-15 , RNA, Messenger , SARS-CoV-2
8.
Front Immunol ; 12: 793953, 2021.
Article En | MEDLINE | ID: mdl-34899762

Durability of SARS-CoV-2 Spike antibody responses after infection provides information relevant to understanding protection against COVID-19 in humans. We report the results of a sequential evaluation of anti-SARS-CoV-2 antibodies in convalescent patients with a median follow-up of 14 months (range 12.4-15.4) post first symptom onset. We report persistence of antibodies for all four specificities tested [Spike, Spike Receptor Binding Domain (Spike-RBD), Nucleocapsid, Nucleocapsid RNA Binding Domain (N-RBD)]. Anti-Spike antibodies persist better than anti-Nucleocapsid antibodies. The durability analysis supports a bi-phasic antibody decay with longer half-lives of antibodies after 6 months and antibody persistence for up to 14 months. Patients infected with the Wuhan (WA1) strain maintained strong cross-reactive recognition of Alpha and Delta Spike-RBD but significantly reduced binding to Beta and Mu Spike-RBD. Sixty percent of convalescent patients with detectable WA1-specific NAb also showed strong neutralization of the Delta variant, the prevalent strain of the present pandemic. These data show that convalescent patients maintain functional antibody responses for more than one year after infection, suggesting a strong long-lasting response after symptomatic disease that may offer a prolonged protection against re-infection. One patient from this cohort showed strong increase of both Spike and Nucleocapsid antibodies at 14 months post-infection indicating SARS-CoV-2 re-exposure. These antibodies showed stronger cross-reactivity to a panel of Spike-RBD including Beta, Delta and Mu and neutralization of a panel of Spike variants including Beta and Gamma. This patient provides an example of strong anti-Spike recall immunity able to control infection at an asymptomatic level. Together, the antibodies from SARS-CoV-2 convalescent patients persist over 14 months and continue to maintain cross-reactivity to the current variants of concern and show strong functional properties.


Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Binding Sites, Antibody/immunology , COVID-19/virology , Cohort Studies , Cross Reactions/immunology , Female , Humans , Male , Middle Aged , Neutralization Tests/methods , Nucleocapsid/immunology , Nucleocapsid/metabolism , Protein Binding/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Time Factors
9.
Viruses ; 13(9)2021 09 15.
Article En | MEDLINE | ID: mdl-34578426

COVID-19 is an ongoing pandemic with high morbidity and mortality. Despite meticulous research, only dexamethasone has shown consistent mortality reduction. Convalescent plasma (CP) infusion might also develop into a safe and effective treatment modality on the basis of recent studies and meta-analyses; however, little is known regarding the kinetics of antibodies in CP recipients. To evaluate the kinetics, we followed 31 CP recipients longitudinally enrolled at a median of 3 days post symptom onset for changes in binding and neutralizing antibody titers and viral loads. Antibodies against the complete trimeric Spike protein and the receptor-binding domain (Spike-RBD), as well as against the complete Nucleocapsid protein and the RNA binding domain (N-RBD) were determined at baseline and weekly following CP infusion. Neutralizing antibody (pseudotype NAb) titers were determined at the same time points. Viral loads were determined semi-quantitatively by SARS-CoV-2 PCR. Patients with low humoral responses at entry showed a robust increase of antibodies to all SARS-CoV-2 proteins and Nab, reaching peak levels within 2 weeks. The rapid increase in binding and neutralizing antibodies was paralleled by a concomitant clearance of the virus within the same timeframe. Patients with high humoral responses at entry demonstrated low or no further increases; however, virus clearance followed the same trajectory as in patients with low antibody response at baseline. Together, the sequential immunological and virological analysis of this well-defined cohort of patients early in infection shows the presence of high levels of binding and neutralizing antibodies and potent clearance of the virus.


Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Nucleocapsid/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Load , Aged , Aged, 80 and over , Antibody Formation/immunology , COVID-19/therapy , Female , Host-Pathogen Interactions , Humans , Immunization, Passive , Kinetics , Male , Middle Aged , COVID-19 Serotherapy
10.
PLoS Pathog ; 17(9): e1009701, 2021 09.
Article En | MEDLINE | ID: mdl-34551020

The speed of development, versatility and efficacy of mRNA-based vaccines have been amply demonstrated in the case of SARS-CoV-2. DNA vaccines represent an important alternative since they induce both humoral and cellular immune responses in animal models and in human trials. We tested the immunogenicity and protective efficacy of DNA-based vaccine regimens expressing different prefusion-stabilized Wuhan-Hu-1 SARS-CoV-2 Spike antigens upon intramuscular injection followed by electroporation in rhesus macaques. Different Spike DNA vaccine regimens induced antibodies that potently neutralized SARS-CoV-2 in vitro and elicited robust T cell responses. The antibodies recognized and potently neutralized a panel of different Spike variants including Alpha, Delta, Epsilon, Eta and A.23.1, but to a lesser extent Beta and Gamma. The DNA-only vaccine regimens were compared to a regimen that included co-immunization of Spike DNA and protein in the same anatomical site, the latter of which showed significant higher antibody responses. All vaccine regimens led to control of SARS-CoV-2 intranasal/intratracheal challenge and absence of virus dissemination to the lower respiratory tract. Vaccine-induced binding and neutralizing antibody titers and antibody-dependent cellular phagocytosis inversely correlated with transient virus levels in the nasal mucosa. Importantly, the Spike DNA+Protein co-immunization regimen induced the highest binding and neutralizing antibodies and showed the strongest control against SARS-CoV-2 challenge in rhesus macaques.


Macaca mulatta , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA , Animals , COVID-19/immunology , COVID-19/therapy , Cohort Studies , DNA, Viral/immunology , Disease Models, Animal , Female , Immunization, Passive , Leukocytes, Mononuclear/immunology , Mice , RNA, Messenger/analysis , SARS-CoV-2/genetics , T-Lymphocytes/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , COVID-19 Serotherapy
11.
Cell Rep ; 36(6): 109504, 2021 08 10.
Article En | MEDLINE | ID: mdl-34352226

Early responses to vaccination are important for shaping both humoral and cellular protective immunity. Dissecting innate vaccine signatures may predict immunogenicity to help optimize the efficacy of mRNA and other vaccine strategies. Here, we characterize the cytokine and chemokine responses to the 1st and 2nd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in antigen-naive and in previously coronavirus disease 2019 (COVID-19)-infected individuals (NCT04743388). Transient increases in interleukin-15 (IL-15) and interferon gamma (IFN-γ) levels early after boost correlate with Spike antibody levels, supporting their use as biomarkers of effective humoral immunity development in response to vaccination. We identify a systemic signature including increases in IL-15, IFN-γ, and IP-10/CXCL10 after the 1st vaccination, which were enriched by tumor necrosis factor alpha (TNF-α) and IL-6 after the 2nd vaccination. In previously COVID-19-infected individuals, a single vaccination results in both strong cytokine induction and antibody titers similar to the ones observed upon booster vaccination in antigen-naive individuals, a result with potential implication for future public health recommendations.


COVID-19 Vaccines/immunology , COVID-19/immunology , Chemokine CXCL10/immunology , Interferon-gamma/immunology , Interleukin-15/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/metabolism , COVID-19 Vaccines/administration & dosage , Female , Humans , Immunity/immunology , Male , Middle Aged , RNA, Messenger/immunology
12.
Eur J Intern Med ; 89: 87-96, 2021 07.
Article En | MEDLINE | ID: mdl-34053848

Elucidating the characteristics of human immune response against SARS-CoV-2 is of high priority and relevant for determining vaccine strategies. We report the results of a follow-up evaluation of anti-SARS-CoV-2 antibodies in 148 convalescent plasma donors who participated in a phase 2 study at a median of 8.3 months (range 6.8-10.5 months) post first symptom onset. Monitoring responses over time, we found contraction of antibody responses for all four antigens tested, with Spike antibodies showing higher persistence than Nucleocapsid antibodies. A piecewise linear random-effects multivariate regression analysis showed a bi-phasic antibody decay with a more pronounced decrease during the first 6 months post symptoms onset by analysis of two intervals. Interestingly, antibodies to Spike showed better longevity whereas their neutralization ability contracted faster. As a result, neutralizing antibodies were detected in only 76% of patients at the last time point. In a multivariate analysis, older age and hospitalization were independently associated with higher Spike, Spike-RBD, Nucleocapsid, N-RBD antibodies and neutralizing antibody levels. Results on persistence and neutralizing ability of anti-SARS-CoV-2 antibodies, especially against Spike and Spike-RBD, should be considered in the design of future vaccination strategies.


COVID-19 , SARS-CoV-2 , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Kinetics , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
13.
Microorganisms ; 9(4)2021 Apr 11.
Article En | MEDLINE | ID: mdl-33920489

COVID-19 is a global pandemic associated with increased morbidity and mortality. Convalescent plasma (CP) infusion is a strategy of potential therapeutic benefit. We conducted a multicenter phase II study to evaluate the efficacy and safety of CP in patients with COVID-19, grade 4 or higher. To evaluate the efficacy of CP, a matched propensity score analysis was used comparing the intervention (n = 59) to a control group (n = 59). Sixty patients received CP within a median time of 7 days from symptom onset. During a median follow-up of 28.5 days, 56/60 patients fully recovered and 1 patient remained in the ICU. The death rate in the CP group was 3.4% vs. 13.6% in the control group. By multivariate analysis, CP recipients demonstrated a significantly reduced risk of death [HR: 0.04 (95% CI: 0.004-0.36), p: 0.005], significantly better overall survival by Kaplan-Meir analysis (p < 0.001), and increased probability of extubation [OR: 30.3 (95% CI: 2.64-348.9), p: 0.006]. Higher levels of antibodies in the CP were independently associated with significantly reduced risk of death. CP infusion was safe with only one grade 3 adverse event (AE), which easily resolved. CP used early may be a safe and effective treatment for patients with severe COVID-19 (trial number NCT04408209).

14.
Microorganisms ; 8(12)2020 Nov 28.
Article En | MEDLINE | ID: mdl-33260775

We evaluated the antibody responses in 259 potential convalescent plasma donors for Covid-19 patients. Different assays were used: a commercial ELISA detecting antibodies against the recombinant spike protein (S1); a multiplex assay detecting total and specific antibody isotypes against three SARS-CoV-2 antigens (S1, basic nucleocapsid (N) protein and receptor-binding domain (RBD)); and an in-house ELISA detecting antibodies to complete spike, RBD and N in 60 of these donors. Neutralizing antibodies (NAb) were also evaluated in these 60 donors. Analyzed samples were collected at a median time of 62 (14-104) days from the day of first symptoms or positive PCR (for asymptomatic patients). Anti-SARS-CoV-2 antibodies were detected in 88% and 87.8% of donors using the ELISA and the multiplex assay, respectively. The multivariate analysis showed that age ≥50 years (p < 0.001) and need for hospitalization (p < 0.001) correlated with higher antibody titers, while asymptomatic status (p < 0.001) and testing >60 days after symptom onset (p = 0.001) correlated with lower titers. Interestingly, pseudotype virus-neutralizing antibodies (PsNAbs) significantly correlated with spike and with RBD antibodies by ELISA. Sera with high PsNAb also showed a strong ability to neutralize active SARS-CoV-2 virus, with hospitalized patients showing higher titers. Therefore, convalescent plasma donors can be selected based on the presence of high RBD antibody titers.

15.
J Virol ; 95(2)2020 12 22.
Article En | MEDLINE | ID: mdl-33087466

The RV144 vaccine trial revealed a correlation between reduced risk of HIV infection and the level of nonneutralizing-antibody (Ab) responses targeting specific epitopes in the second variable domain (V2) of the HIV gp120 envelope (Env) protein, suggesting this region as a target for vaccine development. To favor induction of V2-specific Abs, we developed a vaccine regimen that included priming with DNA expressing an HIV V1V2 trimeric scaffold immunogen followed by booster immunizations with a combination of DNA and protein in rhesus macaques. Priming vaccination with DNA expressing the HIV recombinant subtype CRF01_AE V1V2 scaffold induced higher and broader V2-specific Ab responses than vaccination with DNA expressing CRF01_AE gp145 Env. Abs recognizing the V2 peptide that was reported as a critical target in RV144 developed only after the priming immunization with V1V2 DNA. The V2-specific Abs showed several nonneutralizing Fc-mediated functions, including ADCP and C1q binding. Importantly, robust V2-specific Abs were maintained upon boosting with gp145 DNA and gp120 protein coimmunization. In conclusion, priming with DNA expressing the trimeric V1V2 scaffold alters the hierarchy of humoral immune responses to V2 region epitopes, providing a method for more efficient induction and maintenance of V2-specific Env Abs associated with reduced risk of HIV infection.IMPORTANCE The aim of this work was to design and test a vaccine regimen focusing the immune response on targets associated with infection prevention. We demonstrated that priming with a DNA vaccine expressing only the HIV Env V1V2 region induces Ab responses targeting the critical region in V2 associated with protection. This work shows that V1V2 scaffold DNA priming immunization provides a method to focus immune responses to the desired target region, in the absence of immune interference by other epitopes. This induced immune responses with improved recognition of epitopes important for protective immunity, namely, V2-specific humoral immune responses inversely correlating with HIV risk of infection in the RV144 trial.


AIDS Vaccines/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV/immunology , Immunization/methods , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , Animals , Antibodies, Neutralizing/immunology , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , HEK293 Cells , HIV Antigens/chemistry , HIV Antigens/genetics , HIV Antigens/immunology , HIV Envelope Protein gp120/genetics , Humans , Immunization, Secondary , Immunogenicity, Vaccine , Macaca mulatta , Protein Conformation , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vaccines, DNA/immunology
16.
J Virol ; 94(24)2020 11 23.
Article En | MEDLINE | ID: mdl-32967951

An efficacious human immunodeficiency virus (HIV) vaccine will likely require induction of both mucosal and systemic immune responses. We compared the immunogenicity and protective efficacy of two mucosal/systemic vaccine regimens and investigated their effects on the rectal microbiome. Rhesus macaques were primed twice mucosally with replication-competent adenovirus type 5 host range mutant (Ad5hr)-simian immunodeficiency virus (SIV) recombinants and boosted twice intramuscularly with ALVAC-SIV recombinant plus SIV gp120 protein or with DNA for SIV genes and rhesus interleukin-12 plus SIV gp120 protein. Controls received empty Ad5hr vector and alum adjuvant only. Both regimens elicited strong, comparable mucosal and systemic cellular and humoral immunity. Prevaccination rectal microbiomes of males and females differed and significantly changed over the course of immunization, most strongly in females after Ad5hr immunizations. Following repeated low-dose intrarectal SIV challenges, both vaccine groups exhibited modestly but significantly reduced acute viremia. Male and female controls exhibited similar acute viral loads; however, vaccinated females, but not males, exhibited lower levels of acute viremia, compared to same-sex controls. Few differences in adaptive immune responses were observed between the sexes. Striking differences in correlations of the rectal microbiome of males and females with acute viremia and immune responses associated with protection were seen and point to effects of the microbiome on vaccine-induced immunity and viremia control. Our study clearly demonstrates direct effects of a mucosal SIV vaccine regimen on the rectal microbiome and validates our previously reported SIV vaccine-induced sex bias. Sex and the microbiome are critical factors that should not be overlooked in vaccine design and evaluation.IMPORTANCE Differences in HIV pathogenesis between males and females, including immunity postinfection, have been well documented, as have steroid hormone effects on the microbiome, which is known to influence mucosal immune responses. Few studies have applied this knowledge to vaccine trials. We investigated two SIV vaccine regimens combining mucosal priming immunizations and systemic protein boosting. We again report a vaccine-induced sex bias, with female rhesus macaques but not males displaying significantly reduced acute viremia. The vaccine regimens, especially the mucosal primes, significantly altered the rectal microbiome. The greatest effects were in females. Striking differences between female and male macaques in correlations of prevalent rectal bacteria with viral loads and potentially protective immune responses were observed. Effects of the microbiome on vaccine-induced immunity and viremia control require further study by microbiome transfer. However, the findings presented highlight the critical importance of considering effects of sex and the microbiome in vaccine design and evaluation.


Immunization, Secondary/methods , Macaca mulatta/immunology , Microbiota/drug effects , Rectum/microbiology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Viremia/immunology , AIDS Vaccines/immunology , Adenoviridae/genetics , Animals , Female , Immunity, Humoral , Immunity, Mucosal , Male , Microbiota/physiology , Rectum/immunology , SAIDS Vaccines/immunology
17.
J Immunother Cancer ; 8(1)2020 05.
Article En | MEDLINE | ID: mdl-32461349

BACKGROUND: Interleukin-15 (IL-15) promotes growth and activation of cytotoxic CD8+ T and natural killer (NK) cells. Bioactive IL-15 is produced in the body as a heterodimeric cytokine, comprising the IL-15 and IL-15 receptor alpha chains (hetIL-15). Several preclinical models support the antitumor activity of hetIL-15 promoting its application in clinical trials. METHODS: The antitumor activity of hetIL-15 produced from mammalian cells was tested in mouse tumor models (MC38 colon carcinoma and TC-1 epithelial carcinoma). The functional diversity of the immune infiltrate and the cytokine/chemokine network within the tumor was evaluated by flow cytometry, multicolor immunohistochemistry (IHC), gene expression profiling by Nanostring Technologies, and protein analysis by electrochemiluminescence and ELISA assays. RESULTS: hetIL-15 treatment resulted in delayed primary tumor growth. Increased NK and CD8+ T cell tumoral infiltration with an increased CD8+/Treg ratio were found by flow cytometry and IHC in hetIL-15 treated animals. Intratumoral NK and CD8+ T cells showed activation features with enhanced interferon-γ (IFN-γ) production, proliferation (Ki67+), cytotoxic potential (Granzyme B+) and expression of the survival factor Bcl-2. Transcriptomics and proteomics analyses revealed complex effects on the tumor microenvironment triggered by hetIL-15 therapy, including increased levels of IFN-γ and XCL1 with intratumoral accumulation of XCR1+IRF8+CD103+ conventional type 1 dendritic cells (cDC1). Concomitantly, the production of the chemokines CXCL9 and CXCL10 by tumor-localized myeloid cells, including cDC1, was boosted by hetIL-15 in an IFN-γ-dependent manner. An increased frequency of circulating CXCR3+ NK and CD8+ T cells was found, suggesting their ability to migrate toward the tumors following the CXCL9 and CXCL10 chemokine gradient. CONCLUSIONS: Our results show that hetIL-15 administration enhances T cell entry into tumors, increasing the success rate of immunotherapy interventions. Our study further supports the incorporation of hetIL-15 in tumor immunotherapy approaches to promote the development of antitumor responses by favoring effector over regulatory cells and by promoting lymphocyte and DC localization into tumors through the modification of the tumor chemokine and cytokine milieu.


Colonic Neoplasms/therapy , Dendritic Cells/immunology , Interleukin-15 Receptor alpha Subunit/metabolism , Interleukin-15/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Chemokine CXCL10/metabolism , Chemokine CXCL9/genetics , Chemokine CXCL9/immunology , Chemokine CXCL9/metabolism , Chemokines, C/genetics , Chemokines, C/immunology , Chemokines, C/metabolism , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cytokines/immunology , Cytokines/metabolism , Immunotherapy , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-15/genetics , Interleukin-15/immunology , Interleukin-15 Receptor alpha Subunit/genetics , Interleukin-15 Receptor alpha Subunit/immunology , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL
18.
J Biol Chem ; 294(12): 4412-4424, 2019 03 22.
Article En | MEDLINE | ID: mdl-30670588

Human interleukin-12 (hIL-12) is a heparin-binding cytokine whose activity was previously shown to be enhanced by heparin and other sulfated glycosaminoglycans. The current study investigated the mechanisms by which heparin increases hIL-12 activity. Using multiple human cell types, including natural killer cells, an IL-12 indicator cell line, and primary peripheral blood mononuclear and T cells, along with bioactivity, flow cytometry, and isothermal titration calorimetry assays, we found that heparin-dependent modulation of hIL-12 function correlates with several of heparin's biophysical characteristics, including chain length, sulfation level, and concentration. Specifically, only heparin molecules longer than eight saccharide units enhanced hIL-12 activity. Furthermore, heparin molecules with three sulfate groups per disaccharide unit outperformed heparin molecules with one or two sulfate groups per disaccharide unit in terms of enhanced hIL-12 binding and activity. Heparin also significantly reduced the EC50 value of hIL-12 by up to 11.8-fold, depending on the responding cell type. Cytokine-profiling analyses revealed that heparin affected the level, but not the type, of cytokines produced by lymphocytes in response to hIL-12. Interestingly, although murine IL-12 also binds heparin, heparin did not enhance its activity. Using the gathered data, we propose a model of hIL-12 stabilization in which heparin serves as a co-receptor enhancing the interaction between heterodimeric hIL-12 and its receptor subunits. The results of this study provide a foundation for further investigation of heparin's interactions with IL-12 family cytokines and for the use of heparin as an immunomodulatory agent.


Heparin/pharmacology , Interleukin-12/pharmacology , Animals , Biophysical Phenomena , Calorimetry , Cytokines/biosynthesis , Dose-Response Relationship, Drug , Female , Flow Cytometry , HEK293 Cells , Heparin/chemistry , Heparitin Sulfate/metabolism , Humans , Interleukin-12/metabolism , Mice , Mice, Inbred C57BL , Protein Binding , Receptors, Interleukin-2/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
19.
J Virol ; 93(4)2019 02 15.
Article En | MEDLINE | ID: mdl-30463978

T follicular helper (TFH) cells are fundamental in germinal center (GC) maturation and selection of antigen-specific B cells within secondary lymphoid organs. GC-resident TFH cells have been fully characterized in human immunodeficiency virus (HIV) infection. However, the role of GC TFH cells in GC B cell responses following various simian immunodeficiency virus (SIV) vaccine regimens in rhesus macaques (RMs) has not been fully investigated. We characterized GC TFH cells of RMs over the course of a mucosal/systemic vaccination regimen to elucidate GC formation and SIV humoral response generation. Animals were mucosally primed twice with replicating adenovirus type 5 host range mutant (Ad5hr)-SIV recombinants and systemically boosted with ALVAC-SIVM766Gag/Pro/gp120-TM and SIVM766&CG7V gD-gp120 proteins formulated in alum hydroxide (ALVAC/Env) or DNA encoding SIVenv/SIVGag/rhesus interleukin 12 (IL-12) plus SIVM766&CG7V gD-gp120 proteins formulated in alum phosphate (DNA&Env). Lymph nodes were biopsied in macaque subgroups prevaccination and at day 3, 7, or 14 after the 2nd Ad5hr-SIV prime and the 2nd vector/Env boost. Evaluations of GC TFH and GC B cell dynamics including correlation analyses supported a significant role for early GC TFH cells in providing B cell help during initial phases of GC formation. GC TFH responses at day 3 post-mucosal priming were consistent with generation of Env-specific memory B cells in GCs and elicitation of prolonged Env-specific humoral immunity in the rectal mucosa. GC Env-specific memory B cell responses elicited early post-systemic boosting correlated significantly with decreased viremia postinfection. Our results highlight the importance of early GC TFH cell responses for robust GC maturation and generation of long-lasting SIV-specific humoral responses at mucosal and systemic sites. Further investigation of GC TFH cell dynamics should facilitate development of an efficacious HIV vaccine.IMPORTANCE The modest HIV protection observed in the human RV144 vaccine trial associated antibody responses with vaccine efficacy. T follicular helper (TFH) cells are CD4+ T cells that select antibody secreting cells with high antigenic affinity in germinal centers (GCs) within secondary lymphoid organs. To evaluate the role of TFH cells in eliciting prolonged virus-specific humoral responses, we vaccinated rhesus macaques with a combined mucosal prime/systemic boost regimen followed by repeated low-dose intrarectal challenges with SIV, mimicking human exposure to HIV-1. Although the vaccine regimen did not prevent SIV infection, decreased viremia was observed in the immunized macaques. Importantly, vaccine-induced TFH responses elicited at day 3 postimmunization and robust GC maturation were strongly associated. Further, early TFH-dependent SIV-specific B cell responses were also correlated with decreased viremia. Our findings highlight the contribution of early vaccine-induced GC TFH responses to elicitation of SIV-specific humoral immunity and implicate their participation in SIV control.


Simian Immunodeficiency Virus/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/physiology , Animals , Antibodies, Viral/immunology , Antibody Formation , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Germinal Center/immunology , Immunity, Humoral/immunology , Immunization/methods , Lymph Nodes/immunology , Macaca mulatta/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Vaccination/methods , Viremia/immunology
...