Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39229207

ABSTRACT

Successful reactive balance control requires coordinated modulation of hip, knee, and ankle torques. Stabilizing joint torques arise from feedforward neural signals that modulate the musculoskeletal system's intrinsic mechanical properties, namely muscle short-range stiffness, and neural feedback pathways that activate muscles in response to sensory input. Although feedforward and feedback pathways are known to modulate the torque at each joint, the role of each pathway to the balance-correcting response across joints is poorly understood. Since the feedforward and feedback torque responses act at different delays following perturbations to balance, we modified the sensorimotor response model (SRM), previously used to analyze the muscle activation response to perturbations, to consist of parallel feedback loops with different delays. Each loop within the model is driven by the same information, center of mass (CoM) kinematics, but each loop has an independent delay. We evaluated if a parallel loop SRM could decompose the reactive torques into the feedforward and feedback contributions during balance-correcting responses to backward support surface translations at four magnitudes. The SRM accurately reconstructed reactive joint torques at the hip, knee, and ankle, across all perturbation magnitudes (R 2 >0.84 & VAF>0.83). Moreover, the hip and knee exhibited feedforward and feedback components, while the ankle only exhibited feedback components. The lack of a feedforward component at the ankle may occur because the compliance of the Achilles tendon attenuates muscle short-range stiffness. Our model may provide a framework for evaluating changes in the feedforward and feedback contributions to balance that occur due to aging, injury, or disease. NEWS AND NOTEWORTHY: Reactive balance control requires coordination of neurally-mediated feedforward and feedback pathways to generate stabilizing joint torques at the hip, knee, and ankle. Using a sensorimotor response model, we decomposed reactive joint torques into feedforward and feedback contributions based on delays relative to center of mass kinematics. Responses across joints were driven by the same signals, but contributions from feedforward versus feedback pathways differed, likely due to differences in musculotendon properties between proximal and distal muscles.

2.
Org Lett ; 26(29): 6136-6141, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39018130

ABSTRACT

A copper-catalyzed alkyne-selective hydroboration of 1,3-enynes is disclosed, providing access to the previously elusive 2-boryl-1,3-dienes. Using CuOAc, Xantphos, and HBpin, Bpin was installed on the internal carbon of a series of symmetric and nonsymmetric 1,3-enynes, affording products with excellent Z:E selectivity. The utility of the 2-boryl-1,3-diene products was demonstrated by transformation to useful functional groups.

3.
J Appl Physiol (1985) ; 136(3): 567-572, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38299222

ABSTRACT

The habitual use of high-heeled footwear may structurally remodel user leg muscle tendons, thereby altering their functional capabilities. High heels set users' ankles in relatively plantarflexed positions, causing calf muscle tendons to operate at relatively short lengths. Habitually operating muscle tendons at relatively short lengths induces structural remodeling that theoretically affects muscle metabolism. Because structural changes occur within the body, the user's locomotor metabolism may change in any footwear condition (e.g., conventional shoes, barefoot). Here, we studied the influence of habitual high-heel use on users' leg muscle-tendon structure and metabolism during walking in flat-soled footwear. We tested eight participants before and after 14 wk of agreeing to wear high heels as their daily shoes. Overall, participants who wore high heels >1,500 steps per day, experienced a 9% decrease in their net metabolic power during walking in flat-soled footwear (d = 1.66, P ≤ 0.049), whereas participants who took <1,000 daily steps in high heels did not (d = 0.44; P = 0.524). Across participants, for every 1,000 daily steps in high heels, net metabolic power during walking in flat-soled footwear decreased 5.3% (r = -0.73; P = 0.040). Metabolic findings were partially explained (r2 = 0.43; P = 0.478) by trending shorter medial gastrocnemius fascicle lengths (d = 0.500, P = 0.327) and increased Achilles tendon stiffness (d = 2.889, P = 0.088). The high-heel intervention did not alter user walking stride kinematics in flat-soled footwear (d ≤ 0.567, P ≥ 0.387). While our limited dataset is unable to establish the mechanisms underlying the high-heel-induced walking economy improvement, it appears that prescribing specific footwear use can be implemented to alter user muscle-tendon properties and augment their function in any shoes.NEW & NOTEWORTHY Habitually wearing high-heeled footwear structurally remodels leg muscle tendons and improves user walking economy, regardless of worn attire.


Subject(s)
Achilles Tendon , Heel , Humans , Heel/physiology , Walking/physiology , Muscle, Skeletal/physiology , Achilles Tendon/physiology , Leg , Shoes , Biomechanical Phenomena
5.
Sci Rep ; 13(1): 7679, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169823

ABSTRACT

We aimed to determine a method for prescribing a standing prosthetic leg length (ProsL) that results in an equivalent running biological leg length (BioL) for athletes with unilateral (UTTA) and bilateral transtibial amputations (BTTA). We measured standing leg length of ten non-amputee (NA) athletes, ten athletes with UTTA, and five athletes with BTTA. All athletes performed treadmill running trials from 3 m/s to their maximum speed. We calculated standing and running BioL and ProsL lengths and assessed the running-to-standing leg length ratio (Lratio) at three instances during ground contact: touchdown, mid-stance, and take-off. Athletes with UTTA had 2.4 cm longer standing ProsL than BioL length (p = 0.030), but their ProsL length were up to 3.3 cm shorter at touchdown and 4.1 cm shorter at mid-stance than BioL, at speed 3-11.5 m/s. At touchdown, mid-stance, and take-off, athletes with BTTA had 0.01-0.05 lower Lratio at 3 m/s (p < 0.001) and 0.03-0.07 lower Lratio at 10 m/s (p < 0.001) in their ProsL compared to the BioL of NA athletes. During running, ProsL were consistently shorter than BioL. To achieve equivalent running leg lengths at touchdown and take-off, athletes with UTTA should set their running-specific prosthesis height so that their standing ProsL length is 2.8-4.5% longer than their BioL length, and athletes with BTTA should set their running-specific prosthesis height so that their standing ProsL lengths are at least 2.1-3.9% longer than their presumed BioL length. Setting ProsL length to match presumed biological dimensions during standing results in shorter legs during running.


Subject(s)
Amputees , Artificial Limbs , Humans , Leg , Biomechanical Phenomena , Amputation, Surgical
6.
R Soc Open Sci ; 10(5): 230483, 2023 May.
Article in English | MEDLINE | ID: mdl-37153365

ABSTRACT

[This corrects the article DOI: 10.1098/rsos.211799.][This corrects the article DOI: 10.1098/rsos.211799.].

7.
J Neurophysiol ; 129(6): 1378-1388, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37162064

ABSTRACT

Muscle coactivation increases in challenging balance conditions as well as with advanced age and mobility impairments. Increased muscle coactivation can occur both in anticipation of (feedforward) and in reaction to (feedback) perturbations, however, the causal relationship between feedforward and feedback muscle coactivation remains elusive. Here, we hypothesized that feedforward muscle coactivation would increase both the body's initial mechanical resistance due to muscle intrinsic properties and the later feedback-mediated muscle coactivation in response to postural perturbations. Young adults voluntarily increased leg muscle coactivation using visual biofeedback before support-surface perturbations. In contrast to our hypothesis, feedforward muscle coactivation did not increase the body's initial intrinsic resistance to perturbations, nor did it increase feedback muscle coactivation. Rather, perturbations with feedforward muscle coactivation elicited a medium- to long-latency increase of feedback-mediated agonist activity but a decrease of feedback-mediated antagonist activity. This reciprocal rather than coactivation effect on ankle agonist and antagonist muscles enabled faster reactive ankle torque generation, reduced ankle dorsiflexion, and reduced center of mass (CoM) motion. We conclude that in young adults, voluntary feedforward muscle coactivation can be independently modulated with respect to feedback-mediated muscle coactivation. Furthermore, our findings suggest feedforward muscle coactivation may be useful for enabling quicker joint torque generation through reciprocal, rather than coactivated, agonist-antagonist feedback muscle activity. As such our results suggest that behavioral context is critical to whether muscle coactivation functions to increase agility versus stability.NEW & NOTEWORTHY Feedforward and feedback muscle coactivation are commonly observed in older and mobility impaired adults and are considered strategies to improve stability by increasing body stiffness prior to and in response to perturbations. In young adults, voluntary feedforward coactivation does not necessarily increase feedback coactivation in response to perturbations. Instead, feedforward coactivation enabled faster ankle torques through reciprocal agonist-antagonist muscle activity. As such, coactivation may promote either agility or stability depending on the behavioral context.


Subject(s)
Ankle , Muscle, Skeletal , Young Adult , Humans , Aged , Muscle, Skeletal/physiology , Ankle Joint/physiology , Isometric Contraction/physiology , Standing Position , Electromyography/methods , Postural Balance/physiology
8.
Sci Robot ; 8(75): eadf1080, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36791215

ABSTRACT

Maintaining balance throughout daily activities is challenging because of the unstable nature of the human body. For instance, a person's delayed reaction times limit their ability to restore balance after disturbances. Wearable exoskeletons have the potential to enhance user balance after a disturbance by reacting faster than physiologically possible. However, "artificially fast" balance-correcting exoskeleton torque may interfere with the user's ensuing physiological responses, consequently hindering the overall reactive balance response. Here, we show that exoskeletons need to react faster than physiological responses to improve standing balance after postural perturbations. Delivering ankle exoskeleton torque before the onset of physiological reactive joint moments improved standing balance by 9%, whereas delaying torque onset to coincide with that of physiological reactive ankle moments did not. In addition, artificially fast exoskeleton torque disrupted the ankle mechanics that generate initial local sensory feedback, but the initial reactive soleus muscle activity was only reduced by 18% versus baseline. More variance of the initial reactive soleus muscle activity was accounted for using delayed and scaled whole-body mechanics [specifically center of mass (CoM) velocity] versus local ankle-or soleus fascicle-mechanics, supporting the notion that reactive muscle activity is commanded to achieve task-level goals, such as maintaining balance. Together, to elicit symbiotic human-exoskeleton balance control, device torque may need to be informed by mechanical estimates of global sensory feedback, such as CoM kinematics, that precede physiological responses.


Subject(s)
Exoskeleton Device , Robotics , Humans , Electromyography , Ankle/physiology , Ankle Joint/physiology
9.
J Appl Physiol (1985) ; 134(4): 887-890, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36825641

ABSTRACT

Physiologists commonly use single-value energy equivalents (e.g., 20.1 kJ/LO2 and 20.9 kJ/LO2) to convert oxygen uptake (V̇o2) to energy, but doing so ignores how the substrate oxidation ratio (carbohydrate:fat) changes across aerobic intensities. Using either 20.1 kJ/LO2 or 20.9 kJ/LO2 can incur systematic errors of up to 7%. In most circumstances, the best approach for estimating energy expenditure is to measure both V̇o2 and V̇co2 and use accurate, species-appropriate stoichiometry. However, there are circumstances when V̇co2 measurements may be unreliable. In those circumstances, we recommend that the research report or compare only V̇o2.NEW & NOTEWORTHY We quantify that the common practice of using single-value oxygen uptake energy equivalents for exercising subjects can incur systematic errors of up to 7%. We argue that such errors can be greatly reduced if researchers measure both V̇o2 and V̇co2 and adopt appropriate stoichiometry equations.


Subject(s)
Carbon Dioxide , Oxygen Consumption , Humans , Energy Metabolism , Exercise , Oxygen
10.
J Exp Biol ; 225(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-36111420

ABSTRACT

The volume of active muscle and duration of extensor muscle force well explain the associated metabolic energy expenditure across body mass and velocity during level-ground running and hopping. However, if these parameters fundamentally drive metabolic energy expenditure, then they should pertain to multiple modes of locomotion and provide a simple framework for relating biomechanics to metabolic energy expenditure in bouncing gaits. Therefore, we evaluated the ability of the 'cost of generating force' hypothesis to link biomechanics and metabolic energy expenditure during human running and hopping across step frequencies. We asked participants to run and hop at 85%, 92%, 100%, 108% and 115% of preferred running step frequency. We calculated changes in active muscle volume, duration of force production and metabolic energy expenditure. Overall, as step frequency increased, active muscle volume decreased as a result of postural changes via effective mechanical advantage (EMA) or duty factor. Accounting for changes in EMA and muscle volume better related to metabolic energy expenditure during running and hopping at different step frequencies than assuming a constant EMA and muscle volume. Thus, to ultimately develop muscle mechanics models that can explain metabolic energy expenditure across different modes of locomotion, we suggest more precise measures of muscle force production that include the effects of EMA.


Subject(s)
Running , Biomechanical Phenomena , Energy Metabolism/physiology , Gait/physiology , Humans , Locomotion/physiology , Muscle, Skeletal/physiology , Running/physiology
11.
J Appl Physiol (1985) ; 133(3): 524-533, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35834625

ABSTRACT

During locomotion, force-producing limb muscles are predominantly responsible for an animal's whole body metabolic energy expenditure. Animals can change the length of their force-producing muscle fascicles by altering body posture (e.g., joint angles), the structural properties of their biological tissues over time (e.g., tendon stiffness), or the body's kinetics (e.g., body weight). Currently, it is uncertain whether relative muscle fascicle operating lengths have a measurable effect on the metabolic energy expended during cyclic locomotion-like contractions. To address this uncertainty, we quantified the metabolic energy expenditure of human participants, as they cyclically produced two distinct ankle moments at three ankle angles (90°, 105°, and 120°) on a fixed-position dynamometer using their soleus. Overall, increasing participant ankle angle from 90° to 120° (more plantar flexion) reduced minimum soleus fascicle length by 17% (both moment levels, P < 0.001) and increased metabolic energy expenditure by an average of 208% across both moment levels (both P < 0.001). For both moment levels, the increased metabolic energy expenditure was not related to greater fascicle positive mechanical work (higher moment level, P = 0.591), fascicle force rate (both P ≥ 0.235), or model-estimated active muscle volume (both P ≥ 0.122). Alternatively, metabolic energy expenditure correlated with average relative soleus fascicle length (r = -0.72, P = 0.002) and activation (r = 0.51, P < 0.001). Therefore, increasing active muscle fascicle operating lengths may reduce metabolic energy expended during locomotion.NEW & NOTEWORTHY During locomotion, active muscles undergo cyclic length-changing contractions. In this study, we isolated confounding variables and revealed that cyclically producing force at relatively shorter fascicle lengths increases metabolic energy expenditure. Therefore, muscle fascicle operating lengths likely have a measurable effect on the metabolic energy expenditure during locomotion.


Subject(s)
Muscle, Skeletal , Tendons , Animals , Ankle/physiology , Ankle Joint/physiology , Biomechanical Phenomena , Humans , Locomotion , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Tendons/physiology
12.
R Soc Open Sci ; 9(6): 211691, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35706678

ABSTRACT

Athletes with transtibial amputation (TTA) use running-specific prostheses (RSPs) to run. RSP configuration likely affects the biomechanics of such athletes across speeds. We determined how the use of three RSP models (Catapult, Sprinter and Xtend) with three stiffness categories (recommended, ±1), and three heights (recommended, ±2 cm) affected contact length (Lc ), stance average vertical ground reaction force (F avg), step frequency (f step) and asymmetry between legs for 10 athletes with unilateral TTA at 3-7 m s-1. The use of the Xtend versus Catapult RSP decreased Lc (p = 2.69 × 10-7) and F avg asymmetry (p = 0.032); the effect on Lc asymmetry diminished with faster speeds (p = 0.0020). The use of the Sprinter versus Catapult RSP decreased F avg asymmetry (p = 7.00 × 10-5); this effect was independent of speed (p = 0.90). The use of a stiffer RSP decreased Lc asymmetry (p ≤ 0.00033); this effect was independent of speed (p ≥ 0.071). The use of a shorter RSP decreased Lc (p = 5.86 × 10-6), F avg (p = 8.58 × 10-6) and f step asymmetry (p = 0.0011); each effect was independent of speed (p ≥ 0.15). To minimize asymmetry, athletes with unilateral TTA should use an Xtend or Sprinter RSP with 2 cm shorter than recommended height and stiffness based on intended speed.

13.
R Soc Open Sci ; 9(1): 211799, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35070345

ABSTRACT

Running-prostheses have enabled exceptional athletes with bilateral leg amputations to surpass Olympic 400 m athletics qualifying standards. Due to the world-class performances and relatively fast race finishes of these athletes, many people assume that running-prostheses provide users an unfair advantage over biologically legged competitors during long sprint races. These assumptions have led athletics governing bodies to prohibit the use of running-prostheses in sanctioned non-amputee (NA) competitions, such as at the Olympics. However, here we show that no athlete with bilateral leg amputations using running-prostheses, including the fastest such athlete, exhibits a single 400 m running performance metric that is better than those achieved by NA athletes. Specifically, the best experimentally measured maximum running velocity and sprint endurance profile of athletes with prosthetic legs are similar to, but not better than those of NA athletes. Further, the best experimentally measured initial race acceleration (from 0 to 20 m), maximum velocity around curves, and velocity at aerobic capacity of athletes with prosthetic legs were 40%, 1-3% and 19% slower compared to NA athletes, respectively. Therefore, based on these 400 m performance metrics, use of prosthetic legs during 400 m running races is not unequivocally advantageous compared to the use of biological legs.

14.
Gerontology ; 68(3): 241-251, 2022.
Article in English | MEDLINE | ID: mdl-34274923

ABSTRACT

Older adults walk slower and with a higher metabolic energy expenditure than younger adults. In this review, we explore the hypothesis that age-related declines in Achilles tendon stiffness increase the metabolic cost of walking due to less economical calf muscle contractions and increased proximal joint work. This viewpoint may motivate interventions to restore ankle muscle-tendon stiffness, improve walking mechanics, and reduce metabolic cost in older adults.


Subject(s)
Achilles Tendon , Achilles Tendon/physiology , Aged , Ankle/physiology , Ankle Joint/physiology , Biomechanical Phenomena/physiology , Gait/physiology , Humans , Muscle, Skeletal/physiology , Walking/physiology
16.
Sci Rep ; 10(1): 17154, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33051532

ABSTRACT

In an attempt to improve their distance-running performance, many athletes race with carbon fiber plates embedded in their shoe soles. Accordingly, we sought to establish whether, and if so how, adding carbon fiber plates to shoes soles reduces athlete aerobic energy expenditure during running (improves running economy). We tested 15 athletes as they ran at 3.5 m/s in four footwear conditions that varied in shoe sole bending stiffness, modified by carbon fiber plates. For each condition, we quantified athlete aerobic energy expenditure and performed biomechanical analyses, which included the use of ultrasonography to examine soleus muscle dynamics in vivo. Overall, increased footwear bending stiffness lengthened ground contact time (p = 0.048), but did not affect ankle (p ≥ 0.060), knee (p ≥ 0.128), or hip (p ≥ 0.076) joint angles or moments. Additionally, increased footwear bending stiffness did not affect muscle activity (all seven measured leg muscles (p ≥ 0.146)), soleus active muscle volume (p = 0.538; d = 0.241), or aerobic power (p = 0.458; d = 0.04) during running. Hence, footwear bending stiffness does not appear to alter the volume of aerobic energy consuming muscle in the soleus, or any other leg muscle, during running. Therefore, adding carbon fiber plates to shoe soles slightly alters whole-body and calf muscle biomechanics but may not improve running economy.


Subject(s)
Carbon Fiber/chemistry , Energy Metabolism/physiology , Muscles/physiology , Adult , Ankle/physiology , Ankle Joint/physiology , Athletes , Biomechanical Phenomena/physiology , Female , Humans , Knee Joint/physiology , Leg/physiology , Male , Running/physiology , Shoes , Young Adult
17.
Proc Biol Sci ; 287(1933): 20200431, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32811308

ABSTRACT

Ground contact duration and stride frequency each affect muscle metabolism and help scientists link walking and running biomechanics to metabolic energy expenditure. While these parameters are often used independently, the product of ground contact duration and stride frequency (i.e. duty factor) may affect muscle contractile mechanics. Here, we sought to separate the metabolic influence of the duration of active force production, cycle frequency and duty factor. Human participants produced cyclic contractions using their soleus (which has a relatively homogeneous fibre type composition) at prescribed cycle-average ankle moments on a fixed dynamometer. Participants produced these ankle moments over short, medium and long durations while maintaining a constant cycle frequency. Overall, decreased duty factor did not affect cycle-average fascicle force (p ≥ 0.252) but did increase net metabolic power (p ≤ 0.022). Mechanistically, smaller duty factors increased maximum muscle-tendon force (p < 0.001), further stretching in-series tendons and shifting soleus fascicles to shorter lengths and faster velocities, thereby increasing soleus total active muscle volume (p < 0.001). Participant soleus total active muscle volume well-explained net metabolic power (r = 0.845; p < 0.001). Therefore, cyclically producing the same cycle-average muscle-tendon force using a decreased duty factor increases metabolic energy expenditure by eliciting less economical muscle contractile mechanics.


Subject(s)
Energy Metabolism/physiology , Muscle, Skeletal/physiology , Tendons/physiology , Adult , Ankle/physiology , Female , Gait/physiology , Humans , Male , Muscle Contraction/physiology , Running/physiology , Walking/physiology
18.
Eur J Appl Physiol ; 120(6): 1449-1456, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32347372

ABSTRACT

PURPOSE: we determined the metabolic and biomechanical effects of adding mass to the running-specific prosthesis (RSP) and biological foot of individuals with a unilateral transtibial amputation (TTA) during running. METHODS: 10 individuals (8 males, 2 females) with a TTA ran on a force-measuring treadmill at 2.5 m/s with 100 g and 300 g added to their RSP alone or to their RSP and biological foot while we measured their metabolic rates and calculated peak vertical ground reaction force (vGRF), stance-average vGRF, and step time symmetry indices. RESULTS: for every 100 g added to the RSP alone, metabolic power increased by 0.86% (p = 0.007) and for every 100 g added to the RSP and biological foot, metabolic power increased by 1.74% ([Formula: see text] 0.001) during running. Adding mass had no effect on peak vGRF (p = 0.102), stance-average vGRF (p = 0.675), or step time (p = 0.413) symmetry indices. We also found that the swing time of the affected leg was shorter than the unaffected leg across conditions ([Formula: see text] 0.007). CONCLUSIONS: adding mass to the lower limbs of runners with a TTA increased metabolic power by more than what has been reported for those without an amputation. We found no effect of added mass on biomechanical asymmetry, but the affected leg had consistently shorter swing times than the unaffected leg. This suggests that individuals with a TTA maintain asymmetries despite changes in RSP mass and that lightweight prostheses could improve performance by minimizing metabolic power without affecting asymmetry.


Subject(s)
Amputees , Artificial Limbs , Gait/physiology , Adult , Amputation, Surgical , Athletes , Biomechanical Phenomena/physiology , Exercise Test , Female , Humans , Male
19.
Sci Rep ; 10(1): 1763, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32019938

ABSTRACT

The running-specific prosthetic (RSP) configuration used by athletes with transtibial amputations (TTAs) likely affects performance. Athletes with unilateral TTAs are prescribed C- or J-shaped RSPs with a manufacturer-recommended stiffness category based on body mass and activity level, and height based on unaffected leg and residual limb length. We determined how 15 different RSP model, stiffness, and height configurations affect maximum running velocity (vmax) and the underlying biomechanics. Ten athletes with unilateral TTAs ran at 3 m/s to vmax on a force-measuring treadmill. vmax was 3.8-10.7% faster when athletes used J-shaped versus C-shaped RSP models (p < 0.05), but was not affected by stiffness category, actual stiffness (kN/m), or height (p = 0.72, p = 0.37, and p = 0.11, respectively). vmax differences were explained by vertical ground reaction forces (vGRFs), stride kinematics, leg stiffness, and symmetry. While controlling for velocity, use of J-shaped versus C-shaped RSPs resulted in greater stance average vGRFs, slower step frequencies, and longer step lengths (p < 0.05). Stance average vGRFs were less asymmetric using J-shaped versus C-shaped RSPs (p < 0.05). Contact time and leg stiffness were more asymmetric using the RSP model that elicited the fastest vmax (p < 0.05). Thus, RSP geometry (J-shape versus C-shape), but not stiffness or height, affects vmax in athletes with unilateral TTAs.


Subject(s)
Amputation, Surgical/rehabilitation , Artificial Limbs , Leg/physiology , Running/physiology , Adult , Athletes , Biomechanical Phenomena , Biophysics/methods , Exercise Test/methods , Female , Health Status , Humans , Male , Prosthesis Design/methods , Young Adult
20.
J Neuroeng Rehabil ; 17(1): 25, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32075669

ABSTRACT

Since the early 2000s, researchers have been trying to develop lower-limb exoskeletons that augment human mobility by reducing the metabolic cost of walking and running versus without a device. In 2013, researchers finally broke this 'metabolic cost barrier'. We analyzed the literature through December 2019, and identified 23 studies that demonstrate exoskeleton designs that improved human walking and running economy beyond capable without a device. Here, we reviewed these studies and highlighted key innovations and techniques that enabled these devices to surpass the metabolic cost barrier and steadily improve user walking and running economy from 2013 to nearly 2020. These studies include, physiologically-informed targeting of lower-limb joints; use of off-board actuators to rapidly prototype exoskeleton controllers; mechatronic designs of both active and passive systems; and a renewed focus on human-exoskeleton interface design. Lastly, we highlight emerging trends that we anticipate will further augment wearable-device performance and pose the next grand challenges facing exoskeleton technology for augmenting human mobility.


Subject(s)
Exoskeleton Device , Running/physiology , Walking/physiology , Biomechanical Phenomena , Exoskeleton Device/trends , Humans , Lower Extremity/physiology , Male , Robotics/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL