Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-492554

ABSTRACT

The Omicron lineage of SARS-CoV-2, first described in November 2021, spread rapidly to become globally dominant and has split into a number of sub-lineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africas Gauteng region uncovered two new sub-lineages, BA.4 and BA.5 which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences and, although closely related to BA.2, contain further mutations in the receptor binding domain of spike. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by serum from triple AstraZeneca or Pfizer vaccinated individuals compared to BA.1 and BA.2. Furthermore, using serum from BA.1 vaccine breakthrough infections there are likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21268461

ABSTRACT

Genome sequencing is pivotal to SARS-CoV-2 surveillance, elucidating the emergence and global dissemination of acquired genetic mutations. Amplicon sequencing has proven very effective for sequencing SARS-CoV-2, but prevalent mutations disrupting primer binding sites have necessitated the revision of sequencing protocols in order to maintain performance for emerging virus lineages. We compared the performance of Oxford Nanopore Technologies (ONT) Midnight and ARTIC tiling amplicon protocols using 196 Delta lineage SARS-CoV-2 clinical specimens, and 71 mostly Omicron lineage samples with S gene target failure (SGTF), reflecting circulating lineages in the United Kingdom during December 2021. 96-plexed nanopore sequencing was used. For Delta lineage samples, ARTIC v4 recovered the greatest proportion of [≥]90% complete genomes (81.1%; 159/193), followed by Midnight (71.5%; 138/193) and ARTIC v3 (34.1%; 14/41). Midnight protocol however yielded higher average genome recovery (mean 98.8%) than ARTIC v4 (98.1%) and ARTIC v3 (75.4%), resulting in less ambiguous final consensus assemblies overall. Explaining these observations were ARTIC v4s superior genome recovery in low viral titre/high cycle threshold (Ct) samples and inferior performance in high titre/low Ct samples, where Midnight excelled. We evaluated Omicron sequencing performance using a revised Midnight primer mix alongside prototype ARTIC v4.1 primers, head-to-head with the existing commercially available Midnight and ARTIC v4 protocols. The revised protocols both improved considerably the recovery of Omicron genomes and exhibited similar overall performance to one another. Revised Midnight protocol recovered [≥]90% complete genomes for 85.9% (61/71) of Omicron samples vs. 88.7% (63/71) for ARTIC v4.1. Approximate cost per sample for Midnight ({pound}12) is lower than ARTIC ({pound}16) while hands-on time is considerably lower for Midnight ([~]7 hours) than ARTIC protocols ([~]9.5 hours).

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-477194

ABSTRACT

SummaryViral sequence data from clinical samples frequently contain human contamination, which must be removed prior to sharing for legal and ethical reasons. To enable host read removal for SARS-CoV-2 sequencing data on low-specification laptops, we developed ReadItAndKeep, a fast lightweight tool for Illumina and nanopore data that only keeps reads matching the SARS-CoV-2 genome. Peak RAM usage is typically below 10MB, and runtime less than one minute. We show that by excluding the polyA tail from the viral reference, ReadItAndKeep prevents bleed-through of human reads, whereas mapping to the human genome lets some reads escape. We believe our test approach (including all possible reads from the human genome, human samples from each of the 26 populations in the 1000 genomes data, and a diverse set of SARS-CoV-2 genomes) will also be useful for others. Availability and implementationReadItAndKeep is implemented in C++, released under the MIT license, and available from https://github.com/GenomePathogenAnalysisService/read-it-and-keep.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-471045

ABSTRACT

On the 24th November 2021 the sequence of a new SARS CoV-2 viral isolate spreading rapidly in Southern Africa was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21259028

ABSTRACT

BackgroundDespite robust efforts, patients and staff acquire SARS-CoV-2 infection in hospitals. In this retrospective cohort study, we investigated whether whole-genome sequencing (WGS) could enhance the epidemiological investigation of healthcare-associated SARS-CoV-2 acquisition. Methods and findingsFrom 17-November-2020 to 5-January-2021, 803 inpatients and 329 staff were diagnosed with SARS-CoV-2 infection across four teaching hospitals in Oxfordshire, UK. We classified cases according to epidemiological definitions, sought epidemiological evidence of a potential source for each nosocomial infection, and evaluated if epidemiologically-linked cases had genomic evidence supporting transmission. We compared epidemiological and genomic outbreak identification. Using national epidemiological definitions, 109/803 (14%) inpatient infections were classified as definite/probable nosocomial, 615 (77%) as community-acquired and 79 (10%) as indeterminate. There was strong epidemiological evidence to support definite/probable cases as nosocomial: 107/109 (98%) had a prior-negative PCR in the same hospital stay before testing positive, and 101(93%) shared time and space with known infected patients/staff. Many indeterminate cases were likely infected in hospital: 53/79 (67%) had a prior-negative PCR and 75 (95%) contact with a potential source. 89/615 (11% of all 803 patients) with apparent community-onset had a recent hospital exposure. WGS highlighted SARS-CoV-2 is mainly imported into hospitals: within 764 samples sequenced 607 genomic clusters were identified (>1 SNP distinct). Only 43/607 (7%) clusters contained evidence of onward transmission (subsequent cases within [≤]1 SNP). 20/21 epidemiologically-identified outbreaks contained multiple genomic introductions. Most (80%) nosocomial acquisition occurred in rapid super-spreading events in settings with a mix of COVID-19 and non-COVID-19 patients. Hospitals not routinely admitting COVID-19 patients had low rates of transmission. Undiagnosed/unsequenced individuals prevent genomic data from excluding nosocomial acquisition. ConclusionsOur findings suggest current surveillance definitions underestimate nosocomial acquisition and reveal most nosocomial transmission occurs from a relatively limited number of highly infectious individuals.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21253218

ABSTRACT

BackgroundNatural and vaccine-induced immunity will play a key role in controlling the SARS-CoV-2 pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. MethodsIn a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, UK, we investigated the protection from symptomatic and asymptomatic PCR-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after one versus two vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. Results13,109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses) and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and two vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95%CI <0.01-0.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [0.02-0.38]) and 85% (0.15 [0.08-0.26]) respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [0.21-0.52]) and any PCR-positive result by 64% (0.36 [0.26-0.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. ConclusionNatural infection resulting in detectable anti-spike antibodies and two vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant. SummaryNatural infection resulting in detectable anti-spike antibodies and two vaccine doses both provided [≥] 85% protection against symptomatic and asymptomatic SARS-CoV-2 infection in healthcare workers, including against the B.1.1.7 variant. Single dose vaccination reduced symptomatic infection by 67%.

SELECTION OF CITATIONS
SEARCH DETAIL