Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Gastroenterology ; 160(1): 362-377.e13, 2021 01.
Article in English | MEDLINE | ID: mdl-33039466

ABSTRACT

BACKGROUND & AIMS: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress, and novel therapeutic response in PC to develop a biomarker-driven therapeutic strategy targeting DDR and replication stress in PC. METHODS: We interrogated the transcriptome, genome, proteome, and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient-derived xenografts and human PC organoids. RESULTS: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors, including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, cosegregates with response to platinum (P < .001) and PARP inhibitor therapy (P < .001) in vitro and in vivo. We generated a novel signature of replication stress that predicts response to ATR (P < .018) and WEE1 inhibitor (P < .029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < .001) but was not associated with DDR deficiency. CONCLUSIONS: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR-proficient PC and after platinum therapy.


Subject(s)
Adenocarcinoma/pathology , DNA Damage/genetics , DNA Repair/genetics , DNA Replication/genetics , Pancreatic Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/therapy , Biomarkers , Cell Culture Techniques , Cell Line, Tumor , Humans , Molecular Targeted Therapy , Organoids , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Xenograft Model Antitumor Assays
2.
Br J Haematol ; 149(2): 250-7, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20151976

ABSTRACT

Approximately 50% of essential thrombocythaemia and primary myelo-fibrosis patients do not have a JAK2 V617F mutation. Up to 5% of these are reported to have a MPL exon 10 mutation but testing for MPL is not routine as there are multiple mutation types. The ability to routinely assess both JAK2 and MPL mutations would be beneficial in the differential diagnosis of unexplained thrombocytosis or myelofibrosis. We developed and applied a high resolution melt (HRM) assay, capable of detecting all known MPL mutations in a single analysis, for the detection of MPL exon 10 mutations. We assessed 175 ET and PMF patients, including 67 that were JAK2 V617F-negative by real time polymerase chain reaction (PCR). Overall, 19/175 (11%) patients had a MPL exon 10 mutation, of whom 16 were JAK2 V617F-negative (16/67; 24%). MPL mutation types were W515L (11), W515K (4), W515R (2) and W515A (1). One patient had both W515L and S505N MPL mutations and these were present in the same haemopoietic colonies. Real time PCR for JAK2 V617F analysis and HRM for MPL exon 10 status identified one or more clonal marker in 71% of patients. This combined genetic approach increases the sensitivity of meeting the World Health Organization diagnostic criteria for these myeloproliferative neoplasms.


Subject(s)
Primary Myelofibrosis/diagnosis , Receptors, Thrombopoietin/genetics , Thrombocythemia, Essential/diagnosis , Algorithms , Diagnosis, Differential , Exons , Genetic Markers , Humans , Janus Kinase 2/genetics , Mutation , Polymerase Chain Reaction/methods , Primary Myelofibrosis/genetics , Thrombocythemia, Essential/genetics , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL