Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Biol ; 215(Pt 18): 3175-90, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22915711

ABSTRACT

We studied the locomotion and behavior of Dosidicus gigas using pop-up archival transmitting (PAT) tags to record environmental parameters (depth, temperature and light) and an animal-borne video package (AVP) to log these parameters plus acceleration along three axes and record forward-directed video under natural lighting. A basic cycle of locomotor behavior in D. gigas involves an active climb of a few meters followed by a passive (with respect to jetting) downward glide carried out in a fins-first direction. Temporal summation of such climb-and-glide events underlies a rich assortment of vertical movements that can reach vertical velocities of 3 m s(-1). In contrast to such rapid movements, D. gigas spends more than 80% of total time gliding at a vertical velocity of essentially zero (53% at 0±0.05 m s(-1)) or sinking very slowly (28% at -0.05 to -0.15 m s(-1)). The vertical distribution of squid was compared with physical features of the local water column (temperature, oxygen and light). Oxygen concentrations of ≤20 µmol kg(-1), characteristic of the midwater oxygen minimum zone (OMZ), can influence the daytime depth of squid, but this depends on location and season, and squid can 'decouple' from this environmental feature. Light is also an important factor in determining daytime depth, and temperature can limit nighttime depth. Vertical velocities were compared over specific depth ranges characterized by large differences in dissolved oxygen. Velocities were generally reduced under OMZ conditions, with faster jetting being most strongly affected. These data are discussed in terms of increased efficiency of climb-and-glide swimming and the potential for foraging at hypoxic depths.


Subject(s)
Behavior, Animal/physiology , Decapodiformes/physiology , Locomotion/physiology , Anaerobiosis , Animals , Geography , Light , Mexico , Oxygen/analysis , Seasons , Swimming/physiology , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL