Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Cell ; 187(8): 1971-1989.e16, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38521060

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity. We implicate potential disease mechanisms affecting these cell types as well as non-neuronal drivers of pathogenesis. Finally, we show that neuron loss in cortical layer 5 tracks more closely with transcriptional identity rather than cellular morphology and extends beyond previously reported vulnerable cell types.


Amyotrophic Lateral Sclerosis , Frontotemporal Lobar Degeneration , Prefrontal Cortex , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Gene Expression Profiling , Neurons/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Single-Cell Gene Expression Analysis
2.
Nat Commun ; 14(1): 5714, 2023 09 15.
Article En | MEDLINE | ID: mdl-37714849

A repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we investigate single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem motor and frontal cortices from C9-ALS, C9-FTD, and control donors. C9-ALS donors present pervasive alterations of gene expression with concordant changes in chromatin accessibility and histone modifications. The greatest alterations occur in upper and deep layer excitatory neurons, as well as in astrocytes. In neurons, the changes imply an increase in proteostasis, metabolism, and protein expression pathways, alongside a decrease in neuronal function. In astrocytes, the alterations suggest activation and structural remodeling. Conversely, C9-FTD donors have fewer high-quality neuronal nuclei in the frontal cortex and numerous gene expression changes in glial cells. These findings highlight a context-dependent molecular disruption in C9-ALS and C9-FTD, indicating unique effects across cell types, brain regions, and diseases.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Transcriptome/genetics , Epigenome , Mutation
4.
Acta Neuropathol ; 138(1): 49-65, 2019 07.
Article En | MEDLINE | ID: mdl-30945056

The hexanucleotide repeat expansion GGGGCC (G4C2)n in the C9orf72 gene is the most common genetic abnormality associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent findings suggest that dysfunction of nuclear-cytoplasmic trafficking could affect the transport of RNA binding proteins in C9orf72 ALS/FTD. Here, we provide evidence that the RNA editing enzyme adenosine deaminase acting on RNA 2 (ADAR2) is mislocalized in C9orf72 repeat expansion mediated ALS/FTD. ADAR2 is responsible for adenosine (A) to inosine (I) editing of double-stranded RNA, and its function has been shown to be essential for survival. Here we show the mislocalization of ADAR2 in human induced pluripotent stem cell-derived motor neurons (hiPSC-MNs) from C9orf72 patients, in mice expressing (G4C2)149, and in C9orf72 ALS/FTD patient postmortem tissue. As a consequence of this mislocalization we observe alterations in RNA editing in our model systems and across multiple brain regions. Analysis of editing at 408,580 known RNA editing sites indicates that there are vast RNA A to I editing aberrations in C9orf72-mediated ALS/FTD. These RNA editing aberrations are found in many cellular pathways, such as the ALS pathway and the crucial EIF2 signaling pathway. Our findings suggest that the mislocalization of ADAR2 in C9orf72 mediated ALS/FTD is responsible for the alteration of RNA processing events that may impact vast cellular functions, including the integrated stress response (ISR) and protein translation.


Adenosine Deaminase/genetics , C9orf72 Protein/genetics , RNA Editing/genetics , RNA-Binding Proteins/genetics , Amyotrophic Lateral Sclerosis/genetics , Animals , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Mice, Transgenic , Pick Disease of the Brain/genetics
5.
Adv Neurobiol ; 20: 1-29, 2018.
Article En | MEDLINE | ID: mdl-29916014

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating and lethal neurodegenerative diseases seen comorbidly in up to 15% of patients. Despite several decades of research, no effective treatment or disease-modifying strategies have been developed. We now understand more than before about the genetics and biology behind ALS and FTD, but the genetic etiology for the majority of patients is still unknown and the phenotypic variability observed across patients, even those carrying the same mutation, is enigmatic. Additionally, susceptibility factors leading to neuronal vulnerability in specific central nervous system regions involved in disease are yet to be identified. As the inherited but dynamic epigenome acts as a cell-specific interface between the inherited fixed genome and both cell-intrinsic mechanisms and environmental input, adaptive epigenetic changes might contribute to the ALS/FTD aspects we still struggle to comprehend. This chapter summarizes our current understanding of basic epigenetic mechanisms, how they relate to ALS and FTD, and their potential as therapeutic targets. A clear understanding of the biological mechanisms driving these two currently incurable diseases is urgent-well-needed therapeutic strategies need to be developed soon. Disease-specific epigenetic changes have already been observed in patients and these might be central to this endeavor.


Amyotrophic Lateral Sclerosis/genetics , Epigenesis, Genetic , Frontotemporal Dementia/genetics , DNA Methylation , Humans , Mutation
6.
Acta Neuropathol ; 134(5): 715-728, 2017 11.
Article En | MEDLINE | ID: mdl-28808785

We previously found C9orf72-associated (c9ALS) and sporadic amyotrophic lateral sclerosis (sALS) brain transcriptomes comprise thousands of defects, among which, some are likely key contributors to ALS pathogenesis. We have now generated complementary methylome data and combine these two data sets to perform a comprehensive "multi-omic" analysis to clarify the molecular mechanisms initiating RNA misregulation in ALS. We found that c9ALS and sALS patients have generally distinct but overlapping methylome profiles, and that the c9ALS- and sALS-affected genes and pathways have similar biological functions, indicating conserved pathobiology in disease. Our results strongly implicate SERPINA1 in both C9orf72 repeat expansion carriers and non-carriers, where expression levels are greatly increased in both patient groups across the frontal cortex and cerebellum. SERPINA1 expression is particularly pronounced in C9orf72 repeat expansion carriers for both brain regions, where SERPINA1 levels are strictly down regulated across most human tissues, including the brain, except liver and blood, and are not measurable in E18 mouse brain. The altered biological networks we identified contain critical molecular players known to contribute to ALS pathology, which also interact with SERPINA1. Our comprehensive combined methylation and transcription study identifies new genes and highlights that direct genetic and epigenetic changes contribute to c9ALS and sALS pathogenesis.


Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Cerebellum/metabolism , DNA Methylation , Frontal Lobe/metabolism , alpha 1-Antitrypsin/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/metabolism , Cerebellum/pathology , DNA Repeat Expansion , Exons , Frontal Lobe/pathology , Humans , alpha 1-Antitrypsin/metabolism
7.
Acta Neuropathol ; 132(4): 487-502, 2016 10.
Article En | MEDLINE | ID: mdl-27282474

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two fatal neurodegenerative diseases seen in comorbidity in up to 50 % of cases. Despite tremendous efforts over the last two decades, no biomarkers or effective therapeutics have been identified to prevent, decelerate, or stop neuronal death in patients. While the identification of multiple mutations in more than two dozen genes elucidated the involvement of several mechanisms in the pathogenesis of both diseases, identifying the hexanucleotide repeat expansion in C9orf72, the most common genetic abnormality in ALS and FTD, opened the door to the discovery of several novel pathogenic biological routes, including chromatin remodeling and transcriptome alteration. Epigenetic processes regulate DNA replication and repair, RNA transcription, and chromatin conformation, which in turn further dictate transcriptional regulation and protein translation. Transcriptional and post-transcriptional epigenetic regulation is mediated by enzymes and chromatin-modifying complexes that control DNA methylation, histone modifications, and RNA editing. While the alteration of DNA methylation and histone modification has recently been reported in ALS and FTD, the assessment of epigenetic involvement in both diseases is still at an early stage, and the involvement of multiple epigenetic players still needs to be evaluated. As the epigenome serves as a way to alter genetic information not only during aging, but also following environmental signals, epigenetic mechanisms might play a central role in initiating ALS and FTD, especially for sporadic cases. Here, we provide a review of what is currently known about altered epigenetic processes in both ALS and FTD and discuss potential therapeutic strategies targeting epigenetic mechanisms. As approximately 85 % of ALS and FTD cases are still genetically unexplained, epigenetic therapeutics explored for other diseases might represent a profitable direction for the field.


Amyotrophic Lateral Sclerosis/genetics , Epigenesis, Genetic/genetics , Frontotemporal Dementia/genetics , Gene Expression Regulation/genetics , Genetic Predisposition to Disease , Animals , Humans , Mutation/genetics
8.
Exp Neurol ; 277: 171-177, 2016 Mar.
Article En | MEDLINE | ID: mdl-26746986

Among several genetic mutations known to cause amyotrophic lateral sclerosis (ALS), a hexanucleotide repeat expansion in the C9orf72 gene is the most common. In approximately 30% of C9orf72-ALS cases, 5-methylcytosine (5mC) levels within the C9orf72 promoter are increased, resulting in a modestly attenuated phenotype. The developmental timing of C9orf72 promoter hypermethylation and the reason why it occurs in only a subset of patients remain unknown. In order to model the acquisition of C9orf72 hypermethylation and examine the potential role of 5-hydroxymethylcytosine (5hmC), we generated induced pluripotent stem cells (iPSCs) from an ALS patient with C9orf72 promoter hypermethylation. Our data show that 5mC levels are reduced by reprogramming and then re-acquired upon neuronal specification, while 5hmC levels increase following reprogramming and are highest in iPSCs and motor neurons. We confirmed the presence of 5hmC within the C9orf72 promoter in post-mortem brain tissues of hypermethylated patients. These findings show that iPSCs are a valuable model system for examining epigenetic perturbations caused by the C9orf72 mutation and reveal a potential role for cytosine demethylation.


Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Induced Pluripotent Stem Cells/physiology , Mutation/genetics , Promoter Regions, Genetic/physiology , Proteins/genetics , 5-Methylcytosine/metabolism , Brain/pathology , C9orf72 Protein , Coculture Techniques , CpG Islands/physiology , Cytosine/analogs & derivatives , DNA Methylation/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/metabolism , Humans , Lymphocytes/physiology , Motor Neurons/physiology , Nanog Homeobox Protein , Nestin/metabolism , RNA, Messenger/metabolism , SOXB1 Transcription Factors/metabolism , Time Factors
9.
Nat Neurosci ; 18(8): 1175-82, 2015 Aug.
Article En | MEDLINE | ID: mdl-26192745

Increasing evidence suggests that defective RNA processing contributes to the development of amyotrophic lateral sclerosis (ALS). This may be especially true for ALS caused by a repeat expansion in C9orf72 (c9ALS), in which the accumulation of RNA foci and dipeptide-repeat proteins are expected to modify RNA metabolism. We report extensive alternative splicing (AS) and alternative polyadenylation (APA) defects in the cerebellum of c9ALS subjects (8,224 AS and 1,437 APA), including changes in ALS-associated genes (for example, ATXN2 and FUS), and in subjects with sporadic ALS (sALS; 2,229 AS and 716 APA). Furthermore, heterogeneous nuclear ribonucleoprotein H (hnRNPH) and other RNA-binding proteins are predicted to be potential regulators of cassette exon AS events in both c9ALS and sALS. Co-expression and gene-association network analyses of gene expression and AS data revealed divergent pathways associated with c9ALS and sALS.


Amyotrophic Lateral Sclerosis/genetics , Cerebellum/metabolism , Frontal Lobe/metabolism , Gene Expression Regulation/genetics , Proteins/genetics , RNA/metabolism , Transcriptome/genetics , Adult , Aged , Alternative Splicing , C9orf72 Protein , Genetic Association Studies , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism , Humans , Middle Aged , Polyadenylation/genetics , Sequence Analysis, RNA
10.
Hum Mol Genet ; 24(5): 1363-73, 2015 Mar 01.
Article En | MEDLINE | ID: mdl-25343993

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective death of motor neurons. Causative mutations in the global RNA-processing proteins TDP-43 and FUS among others, as well as their aggregation in ALS patients, have identified defects in RNA metabolism as an important feature in this disease. Lethal congenital contracture syndrome 1 and lethal arthrogryposis with anterior horn cell disease are autosomal recessive fetal motor neuron diseases that are caused by mutations in another global RNA-processing protein, hGle1. In this study, we carried out the first screening of GLE1 in ALS patients (173 familial and 760 sporadic) and identified 2 deleterious mutations (1 splice site and 1 nonsense mutation) and 1 missense mutation. Functional analysis of the deleterious mutants revealed them to be unable to rescue motor neuron pathology in zebrafish morphants lacking Gle1. Furthermore, in HeLa cells, both mutations caused a depletion of hGle1 at the nuclear pore where it carries out an essential role in nuclear export of mRNA. These results suggest a haploinsufficiency mechanism and point to a causative role for GLE1 mutations in ALS patients. This further supports the involvement of global defects in RNA metabolism in ALS.


Amyotrophic Lateral Sclerosis/genetics , Codon, Nonsense , Mutation, Missense , Nucleocytoplasmic Transport Proteins/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Arthrogryposis/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Haploinsufficiency/genetics , HeLa Cells , Humans , Microscopy, Confocal , Motor Neurons/pathology , Nuclear Pore/genetics , Nuclear Pore/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Pedigree , Protein Processing, Post-Translational , RNA Splicing , RNA, Messenger/metabolism , Zebrafish
11.
Acta Neuropathol ; 128(4): 505-24, 2014 Oct.
Article En | MEDLINE | ID: mdl-25173361

The occurrence of repeat-associated non-ATG (RAN) translation, an atypical form of translation of expanded repeats that results in the synthesis of homopolymeric expansion proteins, is becoming more widely appreciated among microsatellite expansion disorders. Such disorders include amyotrophic lateral sclerosis and frontotemporal dementia caused by a hexanucleotide repeat expansion in the C9ORF72 gene (c9FTD/ALS). We and others have recently shown that this bidirectionally transcribed repeat is RAN translated, and the "c9RAN proteins" thusly produced form neuronal inclusions throughout the central nervous system of c9FTD/ALS patients. Nonetheless, the potential contribution of c9RAN proteins to disease pathogenesis remains poorly understood. In the present study, we demonstrate that poly(GA) c9RAN proteins are neurotoxic and may be implicated in the neurodegenerative processes of c9FTD/ALS. Specifically, we show that expression of poly(GA) proteins in cultured cells and primary neurons leads to the formation of soluble and insoluble high molecular weight species, as well as inclusions composed of filaments similar to those observed in c9FTD/ALS brain tissues. The expression of poly(GA) proteins is accompanied by caspase-3 activation, impaired neurite outgrowth, inhibition of proteasome activity, and evidence of endoplasmic reticulum (ER) stress. Of importance, ER stress inhibitors, salubrinal and TUDCA, provide protection against poly(GA)-induced toxicity. Taken together, our data provide compelling evidence towards establishing RAN translation as a pathogenic mechanism of c9FTD/ALS, and suggest that targeting the ER using small molecules may be a promising therapeutic approach for these devastating diseases.


Amyotrophic Lateral Sclerosis/metabolism , DNA Repeat Expansion/genetics , Endoplasmic Reticulum Stress/physiology , Frontotemporal Dementia/metabolism , Proteins/metabolism , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Antibodies/pharmacology , Brain/metabolism , Brain/pathology , Brain/ultrastructure , C9orf72 Protein , Cell Nucleolus/metabolism , Cell Nucleolus/ultrastructure , Cells, Cultured , Cholagogues and Choleretics/pharmacology , DNA Repeat Expansion/immunology , Embryo, Mammalian , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Female , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , HEK293 Cells , Humans , Male , Mice , Middle Aged , Nerve Tissue Proteins/metabolism , Protein Structure, Secondary , Proteins/chemistry
12.
Neuron ; 83(5): 1043-50, 2014 Sep 03.
Article En | MEDLINE | ID: mdl-25132468

A repeat expansion in C9ORF72 causes frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). RNA of the expanded repeat (r(GGGGCC)exp) forms nuclear foci or undergoes repeat-associated non-ATG (RAN) translation, producing "c9RAN proteins." Since neutralizing r(GGGGCC)exp could inhibit these potentially toxic events, we sought to identify small-molecule binders of r(GGGGCC)exp. Chemical and enzymatic probing of r(GGGGCC)8 indicate that it adopts a hairpin structure in equilibrium with a quadruplex structure. Using this model, bioactive small molecules targeting r(GGGGCC)exp were designed and found to significantly inhibit RAN translation and foci formation in cultured cells expressing r(GGGGCC)66 and neurons transdifferentiated from fibroblasts of repeat expansion carriers. Finally, we show that poly(GP) c9RAN proteins are specifically detected in c9ALS patient cerebrospinal fluid. Our findings highlight r(GGGGCC)exp-binding small molecules as a possible c9FTD/ALS therapeutic and suggest that c9RAN proteins could potentially serve as a pharmacodynamic biomarker to assess efficacy of therapies that target r(GGGGCC)exp.


Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Biomarkers/analysis , DNA Repeat Expansion/genetics , G-Quadruplexes , Proteins/genetics , Adult , Aged , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Chlorocebus aethiops , Female , Fibroblasts , Humans , Male , Middle Aged , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Protein Binding , Proteins/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
13.
Brain Res ; 1584: 15-21, 2014 Oct 10.
Article En | MEDLINE | ID: mdl-24530272

A significant number of patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two diseases commonly seen in comorbidity, carry an expanded noncoding hexanucleotide repeat in the C9orf72 gene, a condition collectively referred to as c9FTD/ALS. Repeat expansions, also present in other neurodegenerative diseases, have been shown to alter epigenetic mechanisms and consequently lead to decreased gene expression, while also leading to toxic RNA gain-of-function. As expression of multiple C9orf72 transcript variants is known to be reduced in c9FTD/ALS cases, our group and others have sought to uncover the mechanisms causing this reduction. We recently demonstrated that histones H3 and H4 undergo trimethylation at lysines 9 (H3K9), 27 (H3K27), 79 (H3K79), and 20 (H4K20) in all pathogenic repeat carrier brain samples, confirming the role of altered histone methylation in disease. It was also reported that about 40% of c9ALS cases show hypermethylation of the CpG island located at the 5' end of the repeat expansion in blood, frontal cortex, and spinal cord. To determine whether the same CpG island is hypermethylated in the cerebella of cases in whom aberrant histone methylation has been identified, we bisulfite-modified the extracted DNA and PCR-amplified 26 CpG sites within the C9orf72 promoter region. Among the ten c9FTD/ALS (4 c9ALS, 6 c9FTD), nine FTD/ALS, and eight disease control samples evaluated, only one c9FTD sample was found to be hypermethylated within the C9orf72 promoter region. This study is the first to report cerebellar hypermethylation in c9FTD/ALS, and the first to identify a c9FTD patient with aberrant DNA methylation. Future studies will need to evaluate hypermethylation of the C9orf72 promoter in a larger cohort of c9FTD patients, and to assess whether DNA methylation variation across brain regions reflects disease phenotype.


Amyotrophic Lateral Sclerosis/genetics , Cerebellum/metabolism , DNA Methylation , Frontotemporal Lobar Degeneration/genetics , Proteins/genetics , Aged , Aged, 80 and over , C9orf72 Protein , CpG Islands/genetics , Female , Histones/genetics , Humans , Male , Middle Aged
14.
Acta Neuropathol ; 127(3): 359-76, 2014 Mar.
Article En | MEDLINE | ID: mdl-24394885

A hexanucleotide repeat expansion within a non-coding region of the C9ORF72 gene is the most common mutation causative of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Elucidating how this bidirectionally transcribed G4C2·C4G2 expanded repeat causes "C9FTLD/ALS" has since become an important goal of the field. Likely pathogenic mechanisms include toxicity induced by repeat-containing RNAs, and loss of C9orf72 function due to epigenetic changes resulting in decreased C9ORF72 mRNA expression. With regards to the former, sense and antisense transcripts of the expanded repeat aberrantly interact with various RNA-binding proteins and form discrete nuclear structures, termed RNA foci. These foci have the capacity to sequester select RNA-binding proteins, thereby impairing their function. (G4C2)exp and (C4G2)exp transcripts also succumb to an alternative fate: repeat-associated non-ATG (RAN) translation. This unconventional mode of translation, which occurs in the absence of an initiating codon, results in the abnormal production of poly(GA), poly(GP), poly(GR), poly(PR) and poly(PA) peptides, collectively referred to as C9RAN proteins. C9RAN proteins form neuronal inclusions throughout the central nervous system of C9FTLD/ALS patients and may contribute to disease pathogenesis. This review aims to summarize the important findings from studies examining mechanisms of disease in C9FTLD/ALS, and will also highlight some of the many questions in need of further investigation.


Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Proteins/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Brain/metabolism , Brain/pathology , C9orf72 Protein , DNA Repeat Expansion , Frontotemporal Lobar Degeneration/pathology , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Proteins/metabolism , RNA/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology
16.
Am J Hum Genet ; 93(5): 900-5, 2013 Nov 07.
Article En | MEDLINE | ID: mdl-24119685

Amyotrophic lateral sclerosis (ALS) is a devastating neurological disorder characterized by the degeneration of motor neurons and typically results in death within 3-5 years from onset. Familial ALS (FALS) comprises 5%-10% of ALS cases, and the identification of genes associated with FALS is indispensable to elucidating the molecular pathogenesis. We identified a Japanese family affected by late-onset, autosomal-dominant ALS in which mutations in genes known to be associated with FALS were excluded. A whole- genome sequencing and parametric linkage analysis under the assumption of an autosomal-dominant mode of inheritance with incomplete penetrance revealed the mutation c.2780G>A (p. Arg927Gln) in ERBB4. An extensive mutational analysis revealed the same mutation in a Canadian individual with familial ALS and a de novo mutation, c.3823C>T (p. Arg1275Trp), in a Japanese simplex case. These amino acid substitutions involve amino acids highly conserved among species, are predicted as probably damaging, and are located within a tyrosine kinase domain (p. Arg927Gln) or a C-terminal domain (p. Arg1275Trp), both of which mediate essential functions of ErbB4 as a receptor tyrosine kinase. Functional analysis revealed that these mutations led to a reduced autophosphorylation of ErbB4 upon neuregulin-1 (NRG-1) stimulation. Clinical presentations of the individuals with mutations were characterized by the involvement of both upper and lower motor neurons, a lack of obvious cognitive dysfunction, and relatively slow progression. This study indicates that disruption of the neuregulin-ErbB4 pathway is involved in the pathogenesis of ALS and potentially paves the way for the development of innovative therapeutic strategies such using NRGs or their agonists to upregulate ErbB4 functions.


Amyotrophic Lateral Sclerosis/genetics , ErbB Receptors/genetics , Mutation , Neuregulins/genetics , Aged , Amino Acid Sequence , Amino Acid Substitution , Amyotrophic Lateral Sclerosis/pathology , Asian People/genetics , Canada , DNA Mutational Analysis , ErbB Receptors/metabolism , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Molecular Sequence Data , Motor Neurons/metabolism , Motor Neurons/pathology , Neuregulins/metabolism , Pedigree , Phosphorylation , Receptor, ErbB-4 , Sequence Analysis, DNA , Signal Transduction
17.
Acta Neuropathol ; 126(6): 895-905, 2013 Dec.
Article En | MEDLINE | ID: mdl-24166615

Individuals carrying (GGGGCC) expanded repeats in the C9orf72 gene represent a significant portion of patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Elucidating how these expanded repeats cause "c9FTD/ALS" has since become an important goal of the field. Toward this end, we sought to investigate whether epigenetic changes are responsible for the decrease in C9orf72 expression levels observed in c9FTD/ALS patients. We obtained brain tissue from ten c9FTD/ALS individuals, nine FTD/ALS cases without a C9orf72 repeat expansion, and nine disease control participants, and generated fibroblastoid cell lines from seven C9orf72 expanded repeat carriers and seven participants carrying normal alleles. Chromatin immunoprecipitation using antibodies for histone H3 and H4 trimethylated at lysines 9 (H3K9), 27 (H3K27), 79 (H3K79), and 20 (H4K20) revealed that these trimethylated residues bind strongly to C9orf72 expanded repeats in brain tissue, but not to non-pathogenic repeats. Our finding that C9orf72 mRNA levels are reduced in the frontal cortices and cerebella of c9FTD/ALS patients is consistent with trimethylation of these histone residues, an event known to repress gene expression. Moreover, treating repeat carrier-derived fibroblasts with 5-aza-2-deoxycytidine, a DNA and histone demethylating agent, not only decreased C9orf72 binding to trimethylated histone residues, but also increased C9orf72 mRNA expression. Our results provide compelling evidence that trimethylation of lysine residues within histones H3 and H4 is a novel mechanism involved in reducing C9orf72 mRNA expression in expanded repeat carriers. Of importance, we show that mutant C9orf72 binding to trimethylated H3K9 and H3K27 is detectable in blood of c9FTD/ALS patients. Confirming these exciting results using blood from a larger cohort of patients may establish this novel epigenetic event as a biomarker for c9FTD/ALS.


Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Lobar Degeneration/genetics , Histones/genetics , Proteins/genetics , Adult , Alleles , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein , DNA Methylation , Epigenesis, Genetic , Frontotemporal Lobar Degeneration/metabolism , Gene Expression , Histones/metabolism , Humans , Proteins/metabolism
18.
Mol Cell Neurosci ; 56: 406-19, 2013 Sep.
Article En | MEDLINE | ID: mdl-23280309

Cellular viability depends upon the well-orchestrated functions carried out by numerous protein-coding and non-coding RNAs, as well as RNA-binding proteins. During the last decade, it has become increasingly evident that abnormalities in RNA processing represent a common feature among many neurodegenerative diseases. In "RNAopathies", which include diseases caused by non-coding repeat expansions, RNAs exert toxicity via diverse mechanisms: RNA foci formation, bidirectional transcription, and the production of toxic RNAs and proteins by repeat associated non-ATG translation. The mechanisms of toxicity in "RNA-binding proteinopathies", diseases in which RNA-binding proteins like TDP-43 and FUS play a prominent role, have yet to be fully elucidated. Nonetheless, both loss of function of the RNA binding protein, and a toxic gain of function resulting from its aggregation, are thought to be involved in disease pathogenesis. As part of the special issue on RNA and Splicing Regulation in Neurodegeneration, this review intends to explore the diverse RNA-related mechanisms contributing to neurodegeneration, with a special emphasis on findings emerging from animal models.


Neurodegenerative Diseases/genetics , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Animals , Humans , Neurodegenerative Diseases/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism
19.
Eur J Hum Genet ; 21(2): 237-9, 2013 Feb.
Article En | MEDLINE | ID: mdl-22739338

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron diseases (MND), while frontotemporal lobar degeneration (FTLD) is the second most common cause of early-onset dementia. Many ALS families segregating FTLD have been reported, particularly over the last decade. Recently, mutations in TARDBP, FUS/TLS, and C9ORF72 have been identified in both ALS and FTLD patients, while mutations in VCP, a FTLD associated gene, have been found in ALS families. Distinct variants located in the 3'-untranslated region (UTR) of the SIGMAR1 gene were previously reported in three unrelated FTLD or FTLD-MND families. We directly sequenced the coding and UTR regions of the SIGMAR1 gene in a targeted cohort of 25 individual familial ALS cases of Caucasian origin with a history of cognitive impairments. This screening identified one variant in the 3'-UTR of the SIGMAR1 gene in one ALS patient, but the same variant was also observed in 1 out of 380 control chromosomes. Subsequently, we screened the same samples for a C9ORF72 repeat expansion: 52% of this cohort was found expanded, including the sample with the SIGMAR1 3'-UTR variant. Consequently, coding and noncoding variants located in the 3'-UTR region of the SIGMAR1 gene are not the cause of FTLD-MND in our cohort, and more than half of this targeted cohort is genetically explained by C9ORF72 repeat expansions.


Amyotrophic Lateral Sclerosis , Dementia , Proteins/genetics , Receptors, sigma/genetics , 3' Untranslated Regions/genetics , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/physiopathology , C9orf72 Protein , DNA Repeat Expansion/genetics , DNA-Binding Proteins/genetics , Dementia/complications , Dementia/genetics , Dementia/physiopathology , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/physiopathology , Humans , Motor Neurons/metabolism , Motor Neurons/pathology , RNA-Binding Protein FUS/genetics , Sigma-1 Receptor
...