Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Nat Struct Mol Biol ; 30(11): 1640-1652, 2023 Nov.
Article En | MEDLINE | ID: mdl-37735617

The SS18-SSX fusion drives oncogenic transformation in synovial sarcoma by bridging SS18, a member of the mSWI/SNF (BAF) complex, to Polycomb repressive complex 1 (PRC1) target genes. Here we show that the ability of SS18-SSX to occupy H2AK119ub1-rich regions is an intrinsic property of its SSX C terminus, which can be exploited by fusion to transcriptional regulators beyond SS18. Accordingly, SS18-SSX recruitment occurs in a manner that is independent of the core components and catalytic activity of BAF. Alternative SSX fusions are also recruited to H2AK119ub1-rich chromatin and reproduce the expression signatures of SS18-SSX by engaging with transcriptional activators. Variant Polycomb repressive complex 1.1 (PRC1.1) acts as the main depositor of H2AK119ub1 and is therefore required for SS18-SSX occupancy. Importantly, the SSX C terminus not only depends on H2AK119ub1 for localization, but also further increases it by promoting PRC1.1 complex stability. Consequently, high H2AK119ub1 levels are a feature of murine and human synovial sarcomas. These results uncover a critical role for SSX-C in mediating gene deregulation in synovial sarcoma by providing specificity to chromatin and further enabling oncofusion binding by enhancing PRC1.1 stability and H2AK119ub1 deposition.


Sarcoma, Synovial , Humans , Animals , Mice , Sarcoma, Synovial/genetics , Sarcoma, Synovial/metabolism , Polycomb Repressive Complex 1/genetics , Transcriptional Activation , Cell Nucleus/metabolism , Chromatin/metabolism , Oncogene Proteins, Fusion/metabolism , Cell Cycle Proteins/metabolism
2.
Mol Cell ; 76(3): 473-484.e7, 2019 11 07.
Article En | MEDLINE | ID: mdl-31494034

Enhancers can regulate the promoters of their target genes over very large genomic distances. It is widely assumed that mechanisms of enhancer action involve the reorganization of three-dimensional chromatin architecture, but this is poorly understood. The predominant model involves physical enhancer-promoter interaction by looping out the intervening chromatin. However, studying the enhancer-driven activation of the Sonic hedgehog gene (Shh), we have identified a change in chromosome conformation that is incompatible with this simple looping model. Using super-resolution 3D-FISH and chromosome conformation capture, we observe a decreased spatial proximity between Shh and its enhancers during the differentiation of embryonic stem cells to neural progenitors. We show that this can be recapitulated by synthetic enhancer activation, is impeded by chromatin-bound proteins located between the enhancer and the promoter, and appears to involve the catalytic activity of poly (ADP-ribose) polymerase. Our data suggest that models of enhancer-promoter communication need to encompass chromatin conformations other than looping.


Chromatin Assembly and Disassembly , Enhancer Elements, Genetic , Hedgehog Proteins/metabolism , Mouse Embryonic Stem Cells/metabolism , Neurogenesis , Neurons/metabolism , Promoter Regions, Genetic , Transcriptional Activation , Animals , Cell Line , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Mice , Models, Genetic , Neurogenesis/genetics , Nucleic Acid Conformation , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
3.
Open Biol ; 6(11)2016 11.
Article En | MEDLINE | ID: mdl-27852806

The expression of genes with key roles in development is under very tight spatial and temporal control, mediated by enhancers. A classic example of this is the sonic hedgehog gene (Shh), which plays a pivotal role in the proliferation, differentiation and survival of neural progenitor cells both in vivo and in vitro. Shh expression in the brain is tightly controlled by several known enhancers that have been identified through genetic, genomic and functional assays. Using chromatin profiling during the differentiation of embryonic stem cells to neural progenitor cells, here we report the identification of a novel long-range enhancer for Shh-Shh-brain-enhancer-6 (SBE6)-that is located 100 kb upstream of Shh and that is required for the proper induction of Shh expression during this differentiation programme. This element is capable of driving expression in the vertebrate brain. Our study illustrates how a chromatin-focused approach, coupled to in vivo testing, can be used to identify new cell-type specific cis-regulatory elements, and points to yet further complexity in the control of Shh expression during embryonic brain development.


Brain/embryology , Enhancer Elements, Genetic , Gene Expression Profiling/methods , Hedgehog Proteins/genetics , Human Embryonic Stem Cells/cytology , Animals , Cell Differentiation , Chromatin/genetics , Gene Expression Regulation, Developmental , Humans , Mice , Signal Transduction
4.
Article En | MEDLINE | ID: mdl-26590168

The concept of gene regulation is being refined as our understanding of the role of enhancer elements grows. Although described more than 30 years ago, the mechanisms through which these cis-regulating elements operate remain under debate. With the recognition that most of the human genetic variation contributing to common disease risk lies outside of genes and probably in enhancers, unraveling these mechanisms becomes ever more important. Originally, a popular view was to consider regulatory elements as an entry site for the transcription machinery that could scan the intervening chromatin until the cognate core promoter was located. Now, the most prominent model for distal enhancer-promoter interaction involves direct enhancer/promoter contacts with a looping out of intervening chromatin. However, a rising awareness of the importance of chromatin architecture and organization forces us to consider enhancer-promoter communication in light of the polymer folding properties of chromatin. Here, we discuss how three-dimensional chromatin folding, topological domains, and the constrained motion, plasticity, and accessibility of chromatin could offer a structural basis for regulatory domains that greatly enhances the probability of enhancer-promoter and transcription factor-promoter interactions and gene activation.


Chromatin/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation , Promoter Regions, Genetic , Transcription, Genetic , Animals , Humans , Transcription Factors
...