Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Immunol ; 208(5): 1021-1033, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35173036

ABSTRACT

Lung infections are a perennial leading cause of death worldwide. The lung epithelium comprises three main cell types: alveolar type I (AT1), alveolar type II (AT2), and bronchiolar cells. Constitutively, these three cell types express extremely low amounts of surface MHC class I (MHC I) molecules, that is, <1% of levels found on medullary thymic epithelial cells (ECs). We report that inhalation of the TLR4 ligand LPS upregulates cell surface MHC I by ∼25-fold on the three subtypes of mouse lung ECs. This upregulation is dependent on Nlrc5, Stat1, and Stat2 and caused by a concerted production of the three IFN families. It is nevertheless hampered, particularly in AT1 cells, by the limited expression of genes instrumental in the peptide loading of MHC I molecules. Genes involved in production and response to cytokines and chemokines were selectively induced in AT1 cells. However, discrete gene subsets were selectively downregulated in AT2 or bronchiolar cells following LPS inhalation. Genes downregulated in AT2 cells were linked to cell differentiation and cell proliferation, and those repressed in bronchiolar cells were primarily involved in cilium function. Our study shows a delicate balance between the expression of transcripts maintaining lung epithelium integrity and transcripts involved in Ag presentation in primary lung ECs.


Subject(s)
Alveolar Epithelial Cells/metabolism , Histocompatibility Antigens Class I/metabolism , Interferons/metabolism , Lipopolysaccharides/immunology , Respiratory Mucosa/immunology , Administration, Inhalation , Alveolar Epithelial Cells/immunology , Animals , Antigen Presentation/immunology , Bronchioles/cytology , Bronchioles/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Cilia/physiology , Cytokines/metabolism , Inflammation/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Lung/immunology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Up-Regulation
2.
PLoS Comput Biol ; 17(10): e1009482, 2021 10.
Article in English | MEDLINE | ID: mdl-34679099

ABSTRACT

MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and neoplastic cells by CD8 T cells. However, accurately predicting the MAP repertoire remains difficult, because only a fraction of the transcriptome generates MAPs. In this study, we investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons (MCCs), while excluding the MCC per se. CAMAP predictions were significantly more accurate when using original codon sequences than shuffled codon sequences which reflect amino acid usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, transcript expression level and CAMAP scores was particularly useful to increase MAP prediction accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon arrangement in the regulation of MAP presentation and support integration of both translational and post-translational events in predictive algorithms to ameliorate modeling of the immunopeptidome.


Subject(s)
Codon , Computational Biology/methods , Histocompatibility Antigens Class I , Neural Networks, Computer , Algorithms , Amino Acid Sequence , Codon/chemistry , Codon/genetics , Codon/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans
3.
J Immunol ; 205(5): 1268-1280, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32690660

ABSTRACT

Regulation of MHC class I (MHC I) expression has been studied almost exclusively in hematolymphoid cells. We report that thymic epithelial cells (TECs), particularly the medullary TECs, constitutively express up to 100-fold more cell surface MHC I proteins than epithelial cells (ECs) from the skin, colon, and lung. Differential abundance of cell surface MHC I in primary ECs is regulated via transcription of MHC I and of genes implicated in the generation of MHC I-binding peptides. Superior MHC I expression in TECs is unaffected by deletion of Ifnar1 or Ifngr1, but is lessened by deletion of Aire, Ifnlr1, Stat1, or Nlrc5, and is driven mainly by type III IFN produced by medullary TECs. Ifnlr1 -/- mice show impaired negative selection of CD8 thymocytes and, at 9 mo of age, present autoimmune manifestations. Our study shows unanticipated variation in MHC I expression by ECs from various sites and provides compelling evidence that superior expression of MHC I in TECs is crucial for proper thymocyte education.


Subject(s)
Epithelial Cells/immunology , Histocompatibility Antigens Class I/immunology , Interferons/immunology , Receptors, Interferon/immunology , Thymus Gland/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Thymocytes/immunology , Interferon Lambda
4.
Sci Transl Med ; 10(470)2018 12 05.
Article in English | MEDLINE | ID: mdl-30518613

ABSTRACT

Tumor-specific antigens (TSAs) represent ideal targets for cancer immunotherapy, but few have been identified thus far. We therefore developed a proteogenomic approach to enable the high-throughput discovery of TSAs coded by potentially all genomic regions. In two murine cancer cell lines and seven human primary tumors, we identified a total of 40 TSAs, about 90% of which derived from allegedly noncoding regions and would have been missed by standard exome-based approaches. Moreover, most of these TSAs derived from nonmutated yet aberrantly expressed transcripts (such as endogenous retroelements) that could be shared by multiple tumor types. Last, we demonstrated that, in mice, the strength of antitumor responses after TSA vaccination was influenced by two parameters that can be estimated in humans and could serve for TSA prioritization in clinical studies: TSA expression and the frequency of TSA-responsive T cells in the preimmune repertoire. In conclusion, the strategy reported herein could considerably facilitate the identification and prioritization of actionable human TSAs.


Subject(s)
Antigens, Neoplasm/metabolism , DNA, Intergenic/genetics , Neoplasms/genetics , Neoplasms/immunology , Amino Acid Sequence , Animals , Cell Line, Tumor , Humans , Immunization , Interferon-gamma/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Peptides/chemistry , Protein Biosynthesis , Proteogenomics , T-Lymphocytes/immunology
5.
Cell Rep ; 21(9): 2558-2570, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29186691

ABSTRACT

The sole nonredundant role of the thymic medulla is to induce central tolerance, a vital process that depends on promiscuous gene expression (pGE), a unique feature of medullary thymic epithelial cells (mTECs). Although pGE enhances transcription of >3,000 genes in mTECs, its impact on the regulation of protein homeostasis remains unexplored. Here, we report that, because of pGE, mature mTECs synthesize substantially more proteins than other cell types and are exquisitely sensitive to loss of immunoproteasomes (IPs). Indeed, IP deficiency causes proteotoxic stress in mTECs and leads to exhaustion of postnatal mTEC progenitors. Moreover, IP-deficient mice show accelerated thymic involution, which is characterized by a selective loss of mTECs and multiorgan autoimmune manifestations. We conclude that pGE, the quintessential feature of mTECs, is a major burden for the maintenance of proteostasis, which is alleviated by the constitutive expression of IPs in mTECs.


Subject(s)
Epithelial Cells/metabolism , Homeostasis/physiology , Animals , Autoimmunity/genetics , Autoimmunity/physiology , Cell Differentiation/physiology , Female , Homeostasis/genetics , Male , Mice , Thymus Gland/cytology , Thymus Gland/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL