Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
2.
Antibiotics (Basel) ; 13(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786118

ABSTRACT

Group B Streptococcus (GBS) is a major cause of contagious bovine mastitis (CBM) in Brazil. The GBS population is composed of host-generalist and host-specialist lineages, which may differ in antimicrobial resistance (AMR) and zoonotic potential, and the surveillance of bovine GBS is crucial to developing effective CBM control and prevention measures. Here, we investigated bovine GBS isolates (n = 156) collected in Brazil between 1987 and 2021 using phenotypic testing and whole-genome sequencing to uncover the molecular epidemiology of bovine GBS. Clonal complex (CC) 61/67 was the predominant clade in the 20th century; however, it was replaced by CC91, with which it shares a most common recent ancestor, in the 21st century, despite the higher prevalence of AMR in CC61/67 than in CC91, and high selection pressure for AMR from indiscriminate antimicrobial use in the Brazilian dairy industry. CC103 also emerged as a dominant CC in the 21st century, and a considerable proportion of herds had two or more GBS strains, suggesting poor biosecurity and within-herd evolution due to the chronic nature of CBM problems. The majority of bovine GBS belonged to serotype Ia or III, which was strongly correlated with CCs. Ninety-three isolates were resistant to tetracycline (≥8 µg/mL; tetO = 57, tetM = 34 or both = 2) and forty-four were resistant to erythromycin (2.0 to >4 µg/mL; ermA = 1, ermB = 38, mechanism unidentified n = 5). Only three isolates were non-susceptible to penicillin (≥8.0 µg/mL), providing opportunities for improved antimicrobial stewardship through the use of narrow-spectrum antimicrobials for the treatment of dairy cattle. The common bovine GBS clades detected in this study have rarely been reported in humans, suggesting limited risk of interspecies transmission of GBS in Brazil. This study provides new data to support improvements to CBM and AMR control, bovine GBS vaccine design, and the management of public health risks posed by bovine GBS in Brazil.

3.
Microb Genom ; 7(10)2021 10.
Article in English | MEDLINE | ID: mdl-34609274

ABSTRACT

In 2010, Brazil introduced the 10-valent pneumococcal conjugate vaccine (PCV10) into the national children's immunization programme. This study describes the genetic characteristics of invasive Streptococcus pneumoniae isolates before and after PCV10 introduction. A subset of 466 [pre-PCV10 (2008-2009): n=232, post-PCV10 (2012-2013): n=234;<5 years old: n=310, ≥5 years old: n=156] pneumococcal isolates, collected through national laboratory surveillance, were whole-genome sequenced (WGS) to determine serotype, pilus locus, antimicrobial resistance and genetic lineages. Following PCV10 introduction, in the <5 years age group, non-vaccine serotypes (NVT) serotype 3 and serotype 19A were the most frequent, and serotypes 12F, 8 and 9 N in the ≥5 years old group. The study identified 65 Global Pneumococcal Sequence Clusters (GPSCs): 49 (88 %) were GPSCs previously described and 16 (12 %) were Brazilian clusters. In total, 36 GPSCs (55 %) were NVT lineages, 18 (28 %) vaccine serotypes (VT) and 11 (17 %) were both VT and NVT lineages. In both sampling periods, the most frequent lineage was GPSC6 (CC156, serotypes 14/9V). In the <5 years old group, a decrease in penicillin (P=0.0123) and cotrimoxazole (P<0.0001) resistance and an increase in tetracycline (P=0.019) were observed. Penicillin nonsusceptibility was predicted in 40 % of the isolates; 127 PBP combinations were identified (51 predicted MIC≥0.125 mg l-1); cotrimoxazole (folA and/or folP alterations), macrolide (mef and/or ermB) and tetracycline (tetM, tetO or tetS/M) resistance were predicted in 63, 13 and 21.6 % of pneumococci studied, respectively. The main lineages associated with multidrug resistance in the post-PCV10 period were composed of NVT, GPSC1 (CC320, serotype 19A), and GPSC47 (ST386, serotype 6C). The study provides a baseline for future comparisons and identified important NVT lineages in the post-PCV10 period in Brazil.


Subject(s)
Genomics , Pneumococcal Vaccines , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/isolation & purification , Anti-Bacterial Agents , Brazil/epidemiology , Child , Child, Preschool , Humans , Pneumococcal Infections/epidemiology , Serogroup , Whole Genome Sequencing
4.
Microb Genom ; 7(9)2021 09.
Article in English | MEDLINE | ID: mdl-34586054

ABSTRACT

Invasive disease caused by Streptococcus pneumoniae (IPD) is one of the leading causes of morbidity and mortality in young children worldwide. In Argentina, PCV13 was introduced into the childhood immunization programme nationwide in 2012 and PCV7 was available from 2000, but only in the private market. Since 1993 the National IPD Surveillance Programme, consisting of 150 hospitals, has conducted nationwide pneumococcal surveillance in Argentina in children under 6 years of age, as part of the SIREVA II-OPS network. A total of 1713 pneumococcal isolates characterized by serotype (Quellung) and antimicrobial resistance (agar dilution) to ten antibiotics, belonging to three study periods: pre-PCV7 era 1998-1999 (pre-PCV), before the introduction of PCV13 2010-2011 (PCV7) and after the introduction of PCV13 2012-2013 (PCV13), were available for inclusion. Fifty-four serotypes were identified in the entire collection and serotypes 14, 5 and 1 represented 50 % of the isolates. Resistance to penicillin was 34.9 %, cefotaxime 10.6 %, meropenem 4.9 %, cotrimoxazole 45 %, erythromycin 21.5 %, tetracycline 15.4 % and chloramphenicol 0.4 %. All the isolates were susceptible to levofloxacin, rifampin and vancomycin. Of 1713 isolates, 1061 (61.9 %) were non-susceptible to at least one antibiotic and 235(13.7 %) were multidrug resistant. A subset of 413 isolates was randomly selected and whole-genome sequenced as part of Global Pneumococcal Sequencing Project (GPS). The genome data was used to investigate the population structure of S. pneumoniae defining pneumococcal lineages using Global Pneumococcal Sequence Clusters (GPSCs), sequence types (STs) and clonal complexes (CCs), prevalent serotypes and their associated pneumococcal lineages and genomic inference of antimicrobial resistance. The collection showed a great diversity of strains. Among the 413 isolates, 73 known and 36 new STs were identified belonging to 38 CCs and 25 singletons, grouped into 52 GPSCs. Important changes were observed among vaccine types when pre-PCV and PCV13 periods were compared; a significant decrease in serotypes 14, 6B and 19F and a significant increase in 7F and 3. Among non-PCV13 types, serogroup 24 increased from 0 % in pre-PCV to 3.2 % in the PCV13 period. Our analysis showed that 66.1 % (273/413) of the isolates were predicted to be non-susceptible to at least one antibiotic and 11.9 % (49/413) were multidrug resistant. We found an agreement of 100 % when comparing the serotype determined by Quellung and WGS-based serotyping and 98.4 % of agreement in antimicrobial resistance. Continued surveillance of the pneumococcal population is needed to reveal the dynamics of pneumococcal isolates in Argentina in post-PCV13. This article contains data hosted by Microreact.


Subject(s)
Drug Resistance, Bacterial/genetics , Genetics, Population , Pneumococcal Infections/microbiology , Serogroup , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Argentina , Child, Preschool , Hospitals , Humans , Pneumococcal Infections/epidemiology , Pneumococcal Vaccines , Serotyping , Streptococcus pneumoniae/isolation & purification , Whole Genome Sequencing
5.
J Glob Antimicrob Resist ; 11: 148-151, 2017 12.
Article in English | MEDLINE | ID: mdl-28818574

ABSTRACT

OBJECTIVES: In Latin America and the Caribbean, pneumococcal infections are estimated to account for 12000-18000 deaths, 327000 pneumonia cases, 4000 meningitis cases and 1229 sepsis cases each year in children under five years old. Pneumococcal antimicrobial resistance has evolved into a worldwide health problem in the last few decades. This study aimed to determine the antimicrobial susceptibility profiles of pneumococcal isolates collected in Trinidad and Tobago and their associated genetic determinants. METHODS: Whole-genome sequences were obtained from 98 pneumococcal isolates recovered at several regional hospitals, including 83 invasive and 15 non-invasive strains, recovered before (n=25) and after (n=73) introduction of pneumococcal conjugate vaccines (PCVs). A bioinformatics pipeline was used to identify core genomic and accessory elements conferring antimicrobial resistance phenotypes, including ß-lactam non-susceptibility. RESULTS AND DISCUSSION: Forty-one isolates (41.8%) were predicted as resistant to at least one antimicrobial class, including 13 (13.3%) resistant to at least three classes. The most common serotypes associated with antimicrobial resistance were 23F (n=10), 19F (n=8), 6B (n=6) and 14 (n=5). The most common serotypes associated with penicillin non-susceptibility were 19F (n=7) and 14 (n=5). Thirty-nine isolates (39.8%) were positive for PI-1 or PI-2 type pili: 30 (76.9%) were PI-1+, 4 (10.3%) were PI-2+ and 5 (12.8%) were positive for both PI-1 and PI-2. Of the 13 multidrug-resistant isolates, 10 belonged to globally distributed clones PMEN3 and PMEN14 and were isolated in the post-PCV period, suggesting clonal expansion.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Streptococcal Infections/microbiology , Streptococcus/isolation & purification , Whole Genome Sequencing/methods , Child, Preschool , Female , Genome, Bacterial , Humans , Infant , Infant, Newborn , Male , Microbial Sensitivity Tests , Streptococcus/drug effects , Streptococcus/genetics , Trinidad and Tobago
6.
Int J Med Microbiol ; 307(7): 415-421, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28756964

ABSTRACT

Before PCV7 introduction, invasive pneumococcal disease (IPD) was responsible for approximately 12,000-18,000 deaths annually among children <5years in Latin America. In Peru, PCV7 was introduced in 2009. We used whole genome sequencing to deduce key features of invasive strains collected in Lima, Peru from 2006 to 2011. We sequenced 212 IPD isolates from 16 hospitals in Lima pre (2006-2009; n=133) and post (2010-2011; n=79) PCV7 introduction; 130 (61.3%) isolates were from children≤5years old. CDC's Streptococcus lab bioinformatics pipeline revealed serotypes, sequence types (STs), pilus genes, PBP types and other resistance determinants. During the pre-PCV7 period, serotype 14 was the most common serotype (24.8%), followed by 6B (20.3%), 19F (10.5%), and 23F (6.8%). Post-PCV7, the proportion of PCV7 serotype 6B decreased significantly (to 6.3%), while 19F (16.3%), 14 (15.0%), 23F (7.5%), and 19A (7.5%) were the most common serotypes; only serotypes 3 and 10A increased significantly. Overall, 82% (n=173) of all isolates carried at least one resistance determinant, including 72 (34%) isolates that carried resistance determinants against 3 or more antimicrobial classes; of these 72 isolates, 56 (78%) belonged to a PCV7 serotype. Eighty-two STs were identified, with 53 of them organized in 14 clonal complexes. ST frequencies were distributed differently pre and post-PCV7 introduction, with only 18 of the 57 STs identified in years 2006-2009 isolates also observed in years 2010-2011 isolates. The apparent expansion of a 19F/ST1421 lineage with predicted ß-lactam resistance (PBP type 13:16:20) and carrying resistance determinants against four additional antimicrobial classes was observed.


Subject(s)
Pneumococcal Infections/microbiology , Pneumococcal Vaccines , Streptococcus pneumoniae/isolation & purification , Whole Genome Sequencing , Adult , Anti-Infective Agents/pharmacology , Child, Preschool , Drug Resistance, Bacterial , Genotype , Humans , Infant , Peru , Pneumococcal Infections/pathology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/classification , Pneumococcal Vaccines/genetics , Serogroup , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics , Vaccines, Conjugate
7.
Vaccine ; 35(6): 972-980, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28081968

ABSTRACT

Serotype 1 is one of the most common causes of pneumococcal disease worldwide. Pneumococcal protein vaccines are currently being developed as an alternate intervention strategy to pneumococcal conjugate vaccines. Pre-requisites for an efficacious pneumococcal protein vaccine are universal presence and minimal variation of the target antigen in the pneumococcal population, and the capability to induce a robust human immune response. We used in silico analysis to assess the prevalence of seven protein vaccine candidates (CbpA, PcpA, PhtD, PspA, SP0148, SP1912, SP2108) among 445 serotype 1 pneumococci from 26 different countries, across four continents. CbpA (76%), PspA (68%), PhtD (28%), PcpA (11%) were not universally encoded in the study population, and would not provide full coverage against serotype 1. PcpA was widely present in the European (82%), but not in the African (2%) population. A multi-valent vaccine incorporating CbpA, PcpA, PhtD and PspA was predicted to provide coverage against 86% of the global population. SP0148, SP1912 and SP2108 were universally encoded and we further assessed their predicted amino acid, antigenic and structural variation. Multiple allelic variants of these proteins were identified, different allelic variants dominated in different continents; the observed variation was predicted to impact the antigenicity and structure of two SP0148 variants, one SP1912 variant and four SP2108 variants, however these variants were each only present in a small fraction of the global population (<2%). The vast majority of the observed variation was predicted to have no impact on the efficaciousness of a protein vaccine incorporating a single variant of SP0148, SP1912 and/or SP2108 from S. pneumoniae TIGR4. Our findings emphasise the importance of taking geographic differences into account when designing global vaccine interventions and support the continued development of SP0148, SP1912 and SP2108 as protein vaccine candidates against this important pneumococcal serotype.


Subject(s)
Antigenic Variation , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Africa , Alleles , Amino Acid Sequence , Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Asia , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Europe , Geography , Global Health , Humans , Models, Molecular , Pneumococcal Infections/immunology , Pneumococcal Infections/pathology , Pneumococcal Infections/virology , Pneumococcal Vaccines/biosynthesis , Pneumococcal Vaccines/genetics , Pneumococcal Vaccines/immunology , Serogroup , South America , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/immunology , Vaccination Coverage/statistics & numerical data , Vaccines, Subunit , Virulence
8.
Science ; 327(5964): 469-74, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20093474

ABSTRACT

Current methods for differentiating isolates of predominant lineages of pathogenic bacteria often do not provide sufficient resolution to define precise relationships. Here, we describe a high-throughput genomics approach that provides a high-resolution view of the epidemiology and microevolution of a dominant strain of methicillin-resistant Staphylococcus aureus (MRSA). This approach reveals the global geographic structure within the lineage, its intercontinental transmission through four decades, and the potential to trace person-to-person transmission within a hospital environment. The ability to interrogate and resolve bacterial populations is applicable to a range of infectious diseases, as well as microbial ecology.


Subject(s)
Cross Infection/microbiology , Genome, Bacterial , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/microbiology , Asia/epidemiology , Bacterial Typing Techniques , Cross Infection/epidemiology , Cross Infection/transmission , Europe/epidemiology , Evolution, Molecular , Genomics/methods , Humans , Likelihood Functions , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Molecular Epidemiology , Molecular Sequence Data , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , South America/epidemiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/transmission , Time Factors , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL