Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasound Obstet Gynecol ; 53(3): 348-357, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29484743

ABSTRACT

OBJECTIVES: Color tissue Doppler imaging (cTDI) is a promising tool for the assessment of fetal cardiac function. However, the analysis of myocardial velocity traces is cumbersome and time-consuming, limiting its application in clinical practice. The aim of this study was to evaluate fetal cardiac function during the second half of pregnancy and to develop reference ranges using an automated method to analyze cTDI recordings from a cardiac four-chamber view. METHODS: This was a cross-sectional study including 201 normal singleton pregnancies between 18 and 42 weeks of gestation. During fetal echocardiography, a four-chamber view of the heart was visualized and cTDI was performed. Regions of interest were positioned at the level of the atrioventricular plane in the left ventricular (LV), right ventricular (RV) and septal walls of the fetal heart, to obtain myocardial velocity traces that were analyzed offline using the automated algorithm. Peak myocardial velocities during atrial contraction (Am), ventricular ejection (Sm) and rapid ventricular filling, i.e. early diastole (Em), as well as the Em/Am ratio, mechanical cardiac time intervals and myocardial performance index (cMPI) were evaluated, and gestational age-specific reference ranges were constructed. RESULTS: At 18 weeks of gestation, the peak myocardial velocities, presented as fitted mean with 95% CI, were: LV Am, 3.39 (3.09-3.70) cm/s; LV Sm, 1.62 (1.46-1.79) cm/s; LV Em, 1.95 (1.75-2.15) cm/s; septal Am, 3.07 (2.80-3.36) cm/s; septal Sm, 1.93 (1.81-2.06) cm/s; septal Em, 2.57 (2.32-2.84) cm/s; RV Am, 4.89 (4.59-5.20) cm/s; RV Sm, 2.31 (2.16-2.46) cm/s; and RV Em, 2.94 (2.69-3.21) cm/s. At 42 weeks of gestation, the peak myocardial velocities had increased to: LV Am, 4.25 (3.87-4.65) cm/s; LV Sm, 3.53 (3.19-3.89) cm/s; LV Em, 4.55 (4.18-4.94) cm/s; septal Am, 4.49 (4.17-4.82) cm/s; septal Sm, 3.36 (3.17-3.55) cm/s; septal Em, 3.76 (3.51-4.03) cm/s; RV Am, 6.52 (6.09-6.96) cm/s; RV Sm, 4.95 (4.59-5.32) cm/s; and RV Em, 5.42 (4.99-5.88) cm/s. The mechanical cardiac time intervals generally remained more stable throughout the second half of pregnancy, although, with increased gestational age, there was an increase in duration of septal and RV atrial contraction, LV pre-ejection and septal and RV ventricular ejection, while there was a decrease in duration of septal postejection. Regression equations used for the construction of gestational age-specific reference ranges for peak myocardial velocities, Em/Am ratios, mechanical cardiac time intervals and cMPI are presented. CONCLUSION: Peak myocardial velocities increase with gestational age, while the mechanical time intervals remain more stable throughout the second half of pregnancy. Using an automated method to analyze cTDI-derived myocardial velocity traces, it was possible to construct reference ranges, which could be used in distinguishing between normal and abnormal fetal cardiac function. Copyright © 2018 ISUOG. Published by John Wiley & Sons Ltd.


Subject(s)
Blood Flow Velocity/physiology , Fetal Heart/diagnostic imaging , Ultrasonography, Doppler, Color/instrumentation , Adult , Algorithms , Cross-Sectional Studies , Echocardiography, Doppler/methods , Female , Fetal Heart/physiology , Fetus , Gestational Age , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Humans , Infant, Newborn , Pregnancy , Reference Values
2.
Ultrasound Obstet Gynecol ; 52(5): 599-608, 2018 Nov.
Article in English | MEDLINE | ID: mdl-28715153

ABSTRACT

OBJECTIVE: To evaluate the feasibility of automated analysis of fetal myocardial velocity recordings obtained by color tissue Doppler imaging (cTDI). METHODS: This was a prospective cross-sectional observational study of 107 singleton pregnancies ≥ 41 weeks of gestation. Myocardial velocity recordings were obtained by cTDI in a long-axis four-chamber view of the fetal heart. Regions of interest were placed in the septum and the right (RV) and left (LV) ventricular walls at the level of the atrioventricular plane. Peak myocardial velocities and mechanical cardiac time intervals were measured both manually and by an automated algorithm and agreement between the two methods was evaluated. RESULTS: In total, 321 myocardial velocity traces were analyzed using each method. It was possible to analyze all velocity traces obtained from the LV, RV and septal walls with the automated algorithm, and myocardial velocities and cardiac mechanical time intervals could be measured in 96% of all traces. The same results were obtained when the algorithm was run repeatedly. The myocardial velocities measured using the automated method correlated significantly with those measured manually. The agreement between methods was not consistent and some cTDI parameters had considerable bias and poor precision. CONCLUSIONS: Automated analysis of myocardial velocity recordings obtained by cTDI was feasible, suggesting that this technique could simplify and facilitate the use of cTDI in the evaluation of fetal cardiac function, both in research and in clinical practice. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.


Subject(s)
Echocardiography, Doppler, Color , Fetal Heart/diagnostic imaging , Ultrasonography, Prenatal , Adult , Blood Flow Velocity , Cross-Sectional Studies , Female , Fetal Heart/physiology , Humans , Image Interpretation, Computer-Assisted , Infant, Newborn , Male , Pattern Recognition, Automated , Predictive Value of Tests , Pregnancy , Pregnancy Outcome , Prospective Studies
3.
IEEE Trans Pattern Anal Mach Intell ; 9(6): 726-41, 1987 Jun.
Article in English | MEDLINE | ID: mdl-21869435

ABSTRACT

Edge detection in a gray-scale image at a fine resolution typically yields noise and unnecessary detail, whereas edge detection at a coarse resolution distorts edge contours. We show that ``edge focusing'', i.e., a coarse-to-fine tracking in a continuous manner, combines high positional accuracy with good noise-reduction. This is of vital interest in several applications. Junctions of different kinds are in this way restored with high precision, which is a basic requirement when performing (projective) geometric analysis of an image for the purpose of restoring the three-dimensional scene. Segmentation of a scene using geometric clues like parallelism, etc., is also facilitated by the algorithm, since unnecessary detail has been filtered away. There are indications that an extension of the focusing algorithm can classify edges, to some extent, into the categories diffuse and nondiffuse (for example diffuse illumination edges). The edge focusing algorithm contains two parameters, namely the coarseness of the resolution in the blurred image from where we start the focusing procedure, and a threshold on the gradient magnitude at this coarse level. The latter parameter seems less critical for the behavior of the algorithm and is not present in the focusing part, i.e., at finer resolutions. The step length of the scale parameter in the focusing scheme has been chosen so that edge elements do not move more than one pixel per focusing step.

SELECTION OF CITATIONS
SEARCH DETAIL
...