Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Atmos Chem ; 72(3-4): 261-286, 2015.
Article in English | MEDLINE | ID: mdl-26692593

ABSTRACT

Total-column nitrogen dioxide (NO2) data collected by a ground-based sun-tracking spectrometer system (Pandora) and an photolytic-converter-based in-situ instrument collocated at NASA's Langley Research Center in Hampton, Virginia were analyzed to study the relationship between total-column and surface NO2 measurements. The measurements span more than a year and cover all seasons. Surface mixing ratios are estimated via application of a planetary boundary-layer (PBL) height correction factor. This PBL correction factor effectively corrects for boundary-layer variability throughout the day, and accounts for up to ≈75 % of the variability between the NO2 data sets. Previous studies have made monthly and seasonal comparisons of column/surface data, which has shown generally good agreement over these long average times. In the current analysis comparisons of column densities averaged over 90 s and 1 h are made. Applicability of this technique to sulfur dioxide (SO2) is briefly explored. The SO2 correlation is improved by excluding conditions where surface levels are considered background. The analysis is extended to data from the July 2011 DISCOVER-AQ mission over the greater Baltimore, MD area to examine the method's performance in more-polluted urban conditions where NO2 concentrations are typically much higher.

2.
Appl Opt ; 40(3): 375-90, 2001 Jan 20.
Article in English | MEDLINE | ID: mdl-18357011

ABSTRACT

We have developed a sophisticated Raman lidar numerical model to simulate the performance of two ground-based Raman water-vapor lidar systems. After verifying the model using these ground-based measurements, we then used the model to simulate the water-vapor measurement capability of an airborne Raman lidar under both daytime and nighttime conditions for a wide range of water-vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable quality to an existing airborne differential absorption water-vapor lidar whereas the nighttime measurements have improved spatial and temporal resolution. In addition, an airborne Raman lidar can offer measurements that are difficult or impossible with the differential absorption lidar technique.

3.
Opt Lett ; 25(16): 1201-3, 2000 Aug 15.
Article in English | MEDLINE | ID: mdl-18066167

ABSTRACT

We describe the retrieval of nighttime lidar profiles by use of a large holographic optical element to simultaneously collect and spectrally disperse Raman-shifted return signals. Results obtained with a 20-Hz, 6-mJ/pulse , frequency-tripled Nd:YAG source demonstrate profiles for atmospheric nitrogen with a range greater than 1 km for a time average of 26 s.

4.
Opt Lett ; 18(1): 72-4, 1993 Jan 01.
Article in English | MEDLINE | ID: mdl-19798354

ABSTRACT

The operation of a fiber Bragg grating strain sensor system that uses interferometric determination of strain-induced wavelength shifts and incorporates a reference channel to compensate for random thermal-induced drift in the output is described. This system is shown to be capable of resolving sub-microstrain changes in the quasi-static strain applied to a grating and has a resolution of ~6 x 10(-3) microstrain/ radicalHz at a strain perturbation frequency of 1 Hz.

6.
Opt Lett ; 18(22): 1973-5, 1993 Nov 15.
Article in English | MEDLINE | ID: mdl-19829465

ABSTRACT

A description and demonstration of a fiber interferometer that uses a short segment of silica hollow-core fiber spliced between two sections of single-mode fiber to form a mechanically robust in-line cavity are presented. The hollow-core fiber is specifically manufactured to have an outer diameter that is equal to the outer diameter of the single-mode lead fibers, thereby combining the best qualities of existing intrinsic and extrinsic Fabry-Perot sensors. A dynamic strain resolution of ~22 nepsilon/ radicalHz at frequencies of >5 Hz with a sensor gauge length of 137 microm is demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL