Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.012
2.
Clin Proteomics ; 21(1): 38, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38825704

BACKGROUND: Descending thoracic aortic aneurysms and dissections can go undetected until severe and catastrophic, and few clinical indices exist to screen for aneurysms or predict risk of dissection. METHODS: This study generated a plasma proteomic dataset from 75 patients with descending type B dissection (Type B) and 62 patients with descending thoracic aortic aneurysm (DTAA). Standard statistical approaches were compared to supervised machine learning (ML) algorithms to distinguish Type B from DTAA cases. Quantitatively similar proteins were clustered based on linkage distance from hierarchical clustering and ML models were trained with uncorrelated protein lists across various linkage distances with hyperparameter optimization using fivefold cross validation. Permutation importance (PI) was used for ranking the most important predictor proteins of ML classification between disease states and the proteins among the top 10 PI protein groups were submitted for pathway analysis. RESULTS: Of the 1,549 peptides and 198 proteins used in this study, no peptides and only one protein, hemopexin (HPX), were significantly different at an adjusted p < 0.01 between Type B and DTAA cases. The highest performing model on the training set (Support Vector Classifier) and its corresponding linkage distance (0.5) were used for evaluation of the test set, yielding a precision-recall area under the curve of 0.7 to classify between Type B from DTAA cases. The five proteins with the highest PI scores were immunoglobulin heavy variable 6-1 (IGHV6-1), lecithin-cholesterol acyltransferase (LCAT), coagulation factor 12 (F12), HPX, and immunoglobulin heavy variable 4-4 (IGHV4-4). All proteins from the top 10 most important groups generated the following significantly enriched pathways in the plasma of Type B versus DTAA patients: complement activation, humoral immune response, and blood coagulation. CONCLUSIONS: We conclude that ML may be useful in differentiating the plasma proteome of highly similar disease states that would otherwise not be distinguishable using statistics, and, in such cases, ML may enable prioritizing important proteins for model prediction.

3.
medRxiv ; 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38699330

Background: Echocardiography is the most common modality for assessing cardiac structure and function. While cardiac magnetic resonance (CMR) imaging is less accessible, CMR can provide unique tissue characterization including late gadolinium enhancement (LGE), T1 and T2 mapping, and extracellular volume (ECV) which are associated with tissue fibrosis, infiltration, and inflammation. While deep learning has been shown to uncover findings not recognized by clinicians, it is unknown whether CMR-based tissue characteristics can be derived from echocardiography videos using deep learning. We hypothesized that deep learning applied to echocardiography could predict CMR-based measurements. Methods: In a retrospective single-center study, adult patients with CMRs and echocardiography studies within 30 days were included. A video-based convolutional neural network was trained on echocardiography videos to predict CMR-derived labels including wall motion abnormality (WMA) presence, LGE presence, and abnormal T1, T2 or ECV across echocardiography views. The model performance was evaluated in a held-out test dataset not used for training. Results: The study population included 1,453 adult patients (mean age 56±18 years, 42% female) with 2,556 paired echocardiography studies occurring on average 2 days after CMR (interquartile range 2 days prior to 6 days after). The model had high predictive capability for presence of WMA (AUC 0.873 [95%CI 0.816-0.922]), however, the model was unable to reliably detect the presence of LGE (AUC 0.699 [0.613-0.780]), native T1 (AUC 0.614 [0.500-0.715]), T2 0.553 [0.420-0.692], or ECV 0.564 [0.455-0.691]). Conclusions: Deep learning applied to echocardiography accurately identified CMR-based WMA, but was unable to predict tissue characteristics, suggesting that signal for these tissue characteristics may not be present within ultrasound videos, and that the use of CMR for tissue characterization remains essential within cardiology. Clinical Perspective: Tissue characterization of the heart muscle is useful for clinical diagnosis and prognosis by identifying myocardial fibrosis, inflammation, and infiltration, and can be measured using cardiac MRI. While echocardiography is highly accessible and provides excellent functional information, its ability to provide tissue characterization information is limited at this time. Our study using a deep learning approach to predict cardiac MRI-based tissue characteristics from echocardiography showed limited ability to do so, suggesting that alternative approaches, including non-deep learning methods should be considered in future research.

4.
Res Sq ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38746373

Systemic lupus erythematosus (SLE) patients are 90% women and over three times more likely to die of cardiovascular disease than women in the general population. Chest pain with no obstructive cardiac disease is associated with coronary microvascular disease (CMD), where narrowing of the small blood vessels can lead to ischemia, and frequently reported by SLE patients. Using whole blood RNA samples, we asked whether gene signatures discriminate SLE patients with coronary microvascular dysfunction (CMD) on cardiac MRI (n=4) from those without (n=7) and whether any signaling pathway is linked to the underlying pathobiology of SLE CMD. RNA-seq analysis revealed 143 differentially expressed (DE) genes between the SLE and healthy control (HC) groups, with virus defense and interferon (IFN) signaling being the key pathways identified as enriched in SLE as expected. We next conducted a comparative analysis of genes differentially expressed in SLE-CMD and SLE-non-CMD relative to HC samples. Our analysis highlighted differences in IFN signaling, RNA sensing and ADP-ribosylation pathways between SLE-CMD and SLE-non-CMD. This is the first study to investigate possible gene signatures associating with CMD in SLE, and our data strongly suggests that distinct molecular mechanisms underly vascular changes in CMD and non-CMD involvement in SLE.

5.
J Nucl Med ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38724278

Transthyretin cardiac amyloidosis (ATTR CA) is increasingly recognized as a cause of heart failure in older patients, with 99mTc-pyrophosphate imaging frequently used to establish the diagnosis. Visual interpretation of SPECT images is the gold standard for interpretation but is inherently subjective. Manual quantitation of SPECT myocardial 99mTc-pyrophosphate activity is time-consuming and not performed clinically. We evaluated a deep learning approach for fully automated volumetric quantitation of 99mTc-pyrophosphate using segmentation of coregistered anatomic structures from CT attenuation maps. Methods: Patients who underwent SPECT/CT 99mTc-pyrophosphate imaging for suspected ATTR CA were included. Diagnosis of ATTR CA was determined using standard criteria. Cardiac chambers and myocardium were segmented from CT attenuation maps using a foundational deep learning model and then applied to attenuation-corrected SPECT images to quantify radiotracer activity. We evaluated the diagnostic accuracy of target-to-background ratio (TBR), cardiac pyrophosphate activity (CPA), and volume of involvement (VOI) using the area under the receiver operating characteristic curve (AUC). We then evaluated associations with the composite outcome of cardiovascular death or heart failure hospitalization. Results: In total, 299 patients were included (median age, 76 y), with ATTR CA diagnosed in 83 (27.8%) patients. CPA (AUC, 0.989; 95% CI, 0.974-1.00) and VOI (AUC, 0.988; 95% CI, 0.973-1.00) had the highest prediction performance for ATTR CA. The next highest AUC was for TBR (AUC, 0.979; 95% CI, 0.964-0.995). The AUC for CPA was significantly higher than that for heart-to-contralateral ratio (AUC, 0.975; 95% CI, 0.952-0.998; P = 0.046). Twenty-three patients with ATTR CA experienced cardiovascular death or heart failure hospitalization. All methods for establishing TBR, CPA, and VOI were associated with an increased risk of events after adjustment for age, with hazard ratios ranging from 1.41 to 1.84 per SD increase. Conclusion: Deep learning segmentation of coregistered CT attenuation maps is not affected by the pattern of radiotracer uptake and allows for fully automatic quantification of hot-spot SPECT imaging such as 99mTc-pyrophosphate. This approach can be used to accurately identify patients with ATTR CA and may play a role in risk prediction.

6.
medRxiv ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38712025

Background: While low-dose computed tomography scans are traditionally used for attenuation correction in hybrid myocardial perfusion imaging (MPI), they also contain additional anatomic and pathologic information not utilized in clinical assessment. We seek to uncover the full potential of these scans utilizing a holistic artificial intelligence (AI)-driven image framework for image assessment. Methods: Patients with SPECT/CT MPI from 4 REFINE SPECT registry sites were studied. A multi-structure model segmented 33 structures and quantified 15 radiomics features for each on CT attenuation correction (CTAC) scans. Coronary artery calcium and epicardial adipose tissue scores were obtained from separate deep-learning models. Normal standard quantitative MPI features were derived by clinical software. Extreme Gradient Boosting derived all-cause mortality risk scores from SPECT, CT, stress test, and clinical features utilizing a 10-fold cross-validation regimen to separate training from testing data. The performance of the models for the prediction of all-cause mortality was evaluated using area under the receiver-operating characteristic curves (AUCs). Results: Of 10,480 patients, 5,745 (54.8%) were male, and median age was 65 (interquartile range [IQR] 57-73) years. During the median follow-up of 2.9 years (1.6-4.0), 651 (6.2%) patients died. The AUC for mortality prediction of the model (combining CTAC, MPI, and clinical data) was 0.80 (95% confidence interval [0.74-0.87]), which was higher than that of an AI CTAC model (0.78 [0.71-0.85]), and AI hybrid model (0.79 [0.72-0.86]) incorporating CTAC and MPI data (p<0.001 for all). Conclusion: In patients with normal perfusion, the comprehensive model (0.76 [0.65-0.86]) had significantly better performance than the AI CTAC (0.72 [0.61-0.83]) and AI hybrid (0.73 [0.62-0.84]) models (p<0.001, for all).CTAC significantly enhances AI risk stratification with MPI SPECT/CT beyond its primary role - attenuation correction. A comprehensive multimodality approach can significantly improve mortality prediction compared to MPI information alone in patients undergoing cardiac SPECT/CT.

7.
Magn Reson Med ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38726884

PURPOSE: To develop a novel low-rank tensor reconstruction approach leveraging the complete acquired data set to improve precision and repeatability of multiparametric mapping within the cardiovascular MR Multitasking framework. METHODS: A novel approach that alternated between estimation of temporal components and spatial components using the entire data set acquired (i.e., including navigator data and imaging data) was developed to improve reconstruction. The precision and repeatability of the proposed approach were evaluated on numerical simulations, 10 healthy subjects, and 10 cardiomyopathy patients at multiple scan times for 2D myocardial T1/T2 mapping with MR Multitasking and were compared with those of the previous navigator-derived fixed-basis approach. RESULTS: In numerical simulations, the proposed approach outperformed the previous fixed-basis approach with lower T1 and T2 error against the ground truth at all scan times studied and showed better motion fidelity. In human subjects, the proposed approach showed no significantly different sharpness or T1/T2 measurement and significantly improved T1 precision by 20%-25%, T2 precision by 10%-15%, T1 repeatability by about 30%, and T2 repeatability by 25%-35% at 90-s and 50-s scan times The proposed approach at the 50-s scan time also showed comparable results with that of the previous fixed-basis approach at the 90-s scan time. CONCLUSION: The proposed approach improved precision and repeatability for quantitative imaging with MR Multitasking while maintaining comparable motion fidelity, T1/T2 measurement, and septum sharpness and had the potential for further reducing scan time from 90 s to 50 s.

8.
Korean J Radiol ; 25(6): 518-539, 2024 Jun.
Article En | MEDLINE | ID: mdl-38807334

Coronary computed tomography angiography (CCTA) has emerged as a pivotal tool for diagnosing and risk-stratifying patients with suspected coronary artery disease (CAD). Recent advancements in image analysis and artificial intelligence (AI) techniques have enabled the comprehensive quantitative analysis of coronary atherosclerosis. Fully quantitative assessments of coronary stenosis and lumen attenuation have improved the accuracy of assessing stenosis severity and predicting hemodynamically significant lesions. In addition to stenosis evaluation, quantitative plaque analysis plays a crucial role in predicting and monitoring CAD progression. Studies have demonstrated that the quantitative assessment of plaque subtypes based on CT attenuation provides a nuanced understanding of plaque characteristics and their association with cardiovascular events. Quantitative analysis of serial CCTA scans offers a unique perspective on the impact of medical therapies on plaque modification. However, challenges such as time-intensive analyses and variability in software platforms still need to be addressed for broader clinical implementation. The paradigm of CCTA has shifted towards comprehensive quantitative plaque analysis facilitated by technological advancements. As these methods continue to evolve, their integration into routine clinical practice has the potential to enhance risk assessment and guide individualized patient management. This article reviews the evolving landscape of quantitative plaque analysis in CCTA and explores its applications and limitations.


Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Humans , Computed Tomography Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Angiography/methods , Plaque, Atherosclerotic/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted , Coronary Stenosis/diagnostic imaging
9.
J Am Coll Cardiol ; 83(22): 2135-2144, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38811091

BACKGROUND: Total coronary atherosclerotic plaque activity across the entire coronary arterial tree is associated with patient-level clinical outcomes. OBJECTIVES: We aimed to investigate whether vessel-level coronary atherosclerotic plaque activity is associated with vessel-level myocardial infarction. METHODS: In this secondary analysis of an international multicenter study of patients with recent myocardial infarction and multivessel coronary artery disease, we assessed vessel-level coronary atherosclerotic plaque activity using coronary 18F-sodium fluoride positron emission tomography to identify vessel-level myocardial infarction. RESULTS: Increased 18F-sodium fluoride uptake was found in 679 of 2,094 coronary arteries and 414 of 691 patients. Myocardial infarction occurred in 24 (4%) vessels with increased coronary atherosclerotic plaque activity and in 25 (2%) vessels without increased coronary atherosclerotic plaque activity (HR: 2.08; 95% CI: 1.16-3.72; P = 0.013). This association was not demonstrable in those treated with coronary revascularization (HR: 1.02; 95% CI: 0.47-2.25) but was notable in untreated vessels (HR: 3.86; 95% CI: 1.63-9.10; Pinteraction = 0.024). Increased coronary atherosclerotic plaque activity in multiple coronary arteries was associated with heightened patient-level risk of cardiac death or myocardial infarction (HR: 2.43; 95% CI: 1.37-4.30; P = 0.002) as well as first (HR: 2.19; 95% CI: 1.18-4.06; P = 0.013) and total (HR: 2.50; 95% CI: 1.42-4.39; P = 0.002) myocardial infarctions. CONCLUSIONS: In patients with recent myocardial infarction and multivessel coronary artery disease, coronary atherosclerotic plaque activity prognosticates individual coronary arteries and patients at risk for myocardial infarction.


Coronary Artery Disease , Myocardial Infarction , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/complications , Myocardial Infarction/epidemiology , Myocardial Infarction/etiology , Male , Female , Middle Aged , Coronary Artery Disease/epidemiology , Coronary Artery Disease/diagnostic imaging , Aged , Positron-Emission Tomography , Coronary Vessels/diagnostic imaging , Risk Factors
10.
Lancet ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38797178

The increasing number of bacterial infections globally that do not respond to any available antibiotics indicates a need to invest in-and ensure access to-new antibiotics, vaccines, and diagnostics. The traditional model of drug development, which depends on substantial revenues to motivate investment, is no longer economically viable without push and pull incentives. Moreover, drugs developed through these mechanisms are unlikely to be affordable for all patients in need, particularly in low-income and middle-income countries. New, publicly funded models based on public-private partnerships could support investment in antibiotics and novel alternatives, and lower patients' out-of-pocket costs, making drugs more accessible. Cost reductions can be achieved with public goods, such as clinical trial networks and platform-based quality assurance, manufacturing, and product development support. Preserving antibiotic effectiveness relies on accurate and timely diagnosis; however scaling up diagnostics faces technological, economic, and behavioural challenges. New technologies appeared during the COVID-19 pandemic, but there is a need for a deeper understanding of market, physician, and consumer behaviour to improve the use of diagnostics in patient management. Ensuring sustainable access to antibiotics also requires infection prevention. Vaccines offer the potential to prevent infections from drug-resistant pathogens, but funding for vaccine development has been scarce in this context. The High-Level Meeting of the UN General Assembly in 2024 offers an opportunity to rethink how research and development can be reoriented to serve disease management, prevention, patient access, and antibiotic stewardship.

11.
Article En | MEDLINE | ID: mdl-38578944

AIMS: The atherosclerotic profile and advanced plaque subtype burden in symptomatic patients ≤45 years old have not been established. This study aimed to assess the prevalence and predictors of coronary artery calcium (CAC), plaque subtypes, and plaque burden by coronary computed tomography angiography (CCTA) in symptomatic young patients. METHODS AND RESULTS: We included 907 symptomatic young patients (18-45 years) from Montefiore undergoing CCTA for chest pain evaluation. Prevalence and predictors of CAC, plaque subtypes, and burden were evaluated using semi-automated software. In the overall population (55% female and 44% Hispanic), 89% had CAC = 0. The likelihood of CAC or any plaque by CCTA increased with >3 risk factors (RF, OR 7.13 [2.14-23.7] and OR 10.26 [3.36-31.2], respectively). Any plaque by CCTA was present in 137 (15%); the strongest independent predictors were age ≥35 years (OR 3.62 [2.05-6.41]) and family history of premature CAD (FHx) (OR 2.76 [1.67-4.58]). Stenosis ≥50% was rare (1.8%), with 31% of those having CAC = 0. Significant non-calcified (NCP, 37.2%) and low-attenuation (LAP, 4.24%) plaque burdens were seen, even in those with non-obstructive stenosis. Among patients with CAC = 0, 5% had plaque, and the only predictor of exclusively non-calcified plaque was FHx (OR 2.29 [1.08-4.86]). CONCLUSIONS: In symptomatic young patients undergoing CCTA, the prevalence of CAC or any coronary atherosclerosis was not negligible, and the likelihood increased with RF burden. The presence of coronary stenosis ≥50% was rare and most often accompanied by CAC > 0 but there was a significant burden of NCP and LAP even within the non-obstructive group.

12.
Article En | MEDLINE | ID: mdl-38589269

AIM: Recent studies suggest that the application of exercise activity questionnaires, including the use of a single-item exercise question, can be additive to the prognostic efficacy of imaging findings. This study aims to evaluate the prognostic efficacy of exercise activity in patients undergoing coronary computed tomography angiography (CCTA). METHODS AND RESULTS: We assessed 9772 patients who underwent CCTA at a single center between 2007 and 2020. Patients were divided into 4 groups of physical activity as no exercise (n â€‹= â€‹1643, 17%), mild exercise (n â€‹= â€‹3156, 32%), moderate exercise (n â€‹= â€‹3542, 36%), and high exercise (n â€‹= â€‹1431,15%), based on a single-item self-reported questionnaire. Coronary stenosis was categorized as no (0%), non-obstructive (1-49%), borderline (50-69%), and obstructive (≥70%). During a median follow-up of 4.64 (IQR 1.53-7.89) years, 490 (7.6%) died. There was a stepwise inverse relationship between exercise activity and mortality (p â€‹< â€‹0.001). Compared with the high activity group, the no activity group had a 3-fold higher mortality risk (HR: 3.3, 95%CI (1.94-5.63), p â€‹< â€‹0.001) after adjustment for age, clinical risk factors, symptoms, and statin use. For any level of CCTA stenosis, mortality rates were inversely associated with the degree of patients' exercise activity. The risk of all-cause mortality was similar among the patients with obstructive stenosis with high exercise versus those with no coronary stenosis but no exercise activity (p â€‹= â€‹0.912). CONCLUSION: Physical activity as assessed by a single-item self-reported questionnaire is a strong stepwise inverse predictor of mortality risk among patients undergoing CCTA.

14.
Nat Commun ; 15(1): 2747, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38553462

Chest computed tomography is one of the most common diagnostic tests, with 15 million scans performed annually in the United States. Coronary calcium can be visualized on these scans, but other measures of cardiac risk such as atrial and ventricular volumes have classically required administration of contrast. Here we show that a fully automated pipeline, incorporating two artificial intelligence models, automatically quantifies coronary calcium, left atrial volume, left ventricular mass, and other cardiac chamber volumes in 29,687 patients from three cohorts. The model processes chamber volumes and coronary artery calcium with an end-to-end time of ~18 s, while failing to segment only 0.1% of cases. Coronary calcium, left atrial volume, and left ventricular mass index are independently associated with all-cause and cardiovascular mortality and significantly improve risk classification compared to identification of abnormalities by a radiologist. This automated approach can be integrated into clinical workflows to improve identification of abnormalities and risk stratification, allowing physicians to improve clinical decision-making.


Calcium , Cardiac Volume , Humans , Heart Ventricles , Artificial Intelligence , Tomography, X-Ray Computed/methods
15.
Article En | MEDLINE | ID: mdl-38456877

BACKGROUND: Computed tomography attenuation correction (CTAC) improves perfusion quantification of hybrid myocardial perfusion imaging by correcting for attenuation artifacts. Artificial intelligence (AI) can automatically measure coronary artery calcium (CAC) from CTAC to improve risk prediction but could potentially derive additional anatomic features. OBJECTIVES: The authors evaluated AI-based derivation of cardiac anatomy from CTAC and assessed its added prognostic utility. METHODS: The authors considered consecutive patients without known coronary artery disease who underwent single-photon emission computed tomography/computed tomography (CT) myocardial perfusion imaging at 3 separate centers. Previously validated AI models were used to segment CAC and cardiac structures (left atrium, left ventricle, right atrium, right ventricular volume, and left ventricular [LV] mass) from CTAC. They evaluated associations with major adverse cardiovascular events (MACEs), which included death, myocardial infarction, unstable angina, or revascularization. RESULTS: In total, 7,613 patients were included with a median age of 64 years. During a median follow-up of 2.4 years (IQR: 1.3-3.4 years), MACEs occurred in 1,045 (13.7%) patients. Fully automated AI processing took an average of 6.2 ± 0.2 seconds for CAC and 15.8 ± 3.2 seconds for cardiac volumes and LV mass. Patients in the highest quartile of LV mass and left atrium, LV, right atrium, and right ventricular volume were at significantly increased risk of MACEs compared to patients in the lowest quartile, with HR ranging from 1.46 to 3.31. The addition of all CT-based volumes and CT-based LV mass improved the continuous net reclassification index by 23.1%. CONCLUSIONS: AI can automatically derive LV mass and cardiac chamber volumes from CT attenuation imaging, significantly improving cardiovascular risk assessment for hybrid perfusion imaging.

16.
Eur Radiol ; 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38466392

OBJECTIVES: Current coronary CT angiography (CTA) guidelines suggest both end-systolic and mid-diastolic phases of the cardiac cycle can be used for CTA image acquisition. However, whether differences in the phase of the cardiac cycle influence coronary plaque measurements is not known. We aim to explore the potential impact of cardiac phases on quantitative plaque assessment. METHODS: We enrolled 39 consecutive patients (23 male, age 66.2 ± 11.5 years) who underwent CTA with dual-source CT with visually evident coronary atherosclerosis and with good image quality. End-systolic and mid- to late-diastolic phase images were reconstructed from the same CTA scan. Quantitative plaque and stenosis were analyzed in both systolic and diastolic images using artificial intelligence (AI)-enabled plaque analysis software (Autoplaque). RESULTS: Overall, 186 lesions from 39 patients were analyzed. There were excellent agreement and correlation between systolic and diastolic images for all plaque volume measurements (Lin's concordance coefficient ranging from 0.97 to 0.99; R ranging from 0.96 to 0.98). There were no substantial intrascan differences per patient between systolic and diastolic phases (p > 0.05 for all) for total (1017.1 ± 712.9 mm3 vs. 1014.7 ± 696.2 mm3), non-calcified (861.5 ± 553.7 mm3 vs. 856.5 ± 528.7 mm3), calcified (155.7 ± 229.3 mm3 vs. 158.2 ± 232.4 mm3), and low-density non-calcified plaque volume (151.4 ± 106.1 mm3 vs. 151.5 ± 101.5 mm3) and diameter stenosis (42.5 ± 18.4% vs 41.3 ± 15.1%). CONCLUSION: Excellent agreement and no substantial differences were observed in AI-enabled quantitative plaque measurements on CTA in systolic and diastolic images. Following further validation, standardized plaque measurements can be performed from CTA in systolic or diastolic cardiac phase. CLINICAL RELEVANCE STATEMENT: Quantitative plaque assessment using artificial intelligence-enabled plaque analysis software can provide standardized plaque quantification, regardless of cardiac phase. KEY POINTS: • The impact of different cardiac phases on coronary plaque measurements is unknown. • Plaque analysis using artificial intelligence-enabled software on systolic and diastolic CT angiography images shows excellent agreement. • Quantitative coronary artery plaque assessment can be performed regardless of cardiac phase.

17.
Article En | MEDLINE | ID: mdl-38445511

AIMS: Variation in diagnostic performance of SPECT myocardial perfusion imaging (MPI) has been observed, yet the impact of cardiac size has not been well characterized. We assessed whether low left ventricular volume influences SPECT MPI's ability to detect obstructive coronary artery disease (CAD), and its interaction with age and sex. METHODS AND RESULTS: A total of 2,066 patients without known CAD (67% male, 64.7 ± 11.2 years) across 9 institutions underwent SPECT MPI with solid-state scanners followed by coronary angiography as part of the REgistry of Fast Myocardial Perfusion Imaging with NExt Generation SPECT. Area under receiver-operating characteristic curve (AUC) analyses evaluated performance of quantitative and visual assessments according to cardiac size (end- diastolic volume [EDV]; < 20th vs. ≥ 20th population or sex-specific percentiles), age (<75 vs. ≥ 75 years), and sex. Significantly decreased performance was observed in patients with low EDV compared to those without (AUC: population 0.72 vs. 0.78, p = 0.03; sex-specific 0.72 vs. 0.79, p = 0.01) and elderly patients compared to younger patients (AUC 0.72 vs. 0.78, p = 0.03), whereas males and females demonstrated similar AUC (0.77 vs. 0.76, p = 0.67). The reduction in accuracy attributed to lower volumes was primarily observed in males (sex-specific threshold: EDV 0.69 vs. 0.79, p = 0.01). Accordingly, a significant decrease in AUC, sensitivity, specificity, and negative predictive value for quantitative and visual assessments was noted in patients with at least two characteristics of low EDV, elderly age, or male sex. CONCLUSIONS: Detection of CAD with SPECT MPI is negatively impacted by small cardiac size, most notably in elderly and male patients.

18.
Article En | MEDLINE | ID: mdl-38376471

AIMS: Vessel specific coronary artery calcification (CAC) is additive to global CAC for prognostic assessment. We assessed accuracy and prognostic implications of vessel-specific automated deep learning (DL) CAC analysis on electrocardiogram gated and attenuation correction computed tomography (CT) in a large multicenter registry. METHODS AND RESULTS: Vessel-specific CAC was assessed in the left main/left anterior descending (LM/LAD), left circumflex (LCX) and right coronary artery (RCA) using a DL model trained on 3000 gated CT and tested on 2094 gated CT and 5969 non-gated attenuation correction CT. Vessel-specific agreement was assessed with linear weighted Cohen's Kappa for CAC zero, 1-100, 101-400 and >400 Agatston units (AU). Risk of major adverse cardiovascular events (MACE) was assessed during 2.4±1.4 years follow-up, with hazard ratios (HR) and 95% confidence intervals (CI). There was strong to excellent agreement between DL and expert ground truth for CAC in LM/LAD, LCX and RCA on gated CT [0.90 (95% CI 0.89 to 0.92); 0.70 (0.68 to 0.73); 0.79 (0.77 to 0.81)] and attenuation correction CT [(0.78 (0.77 to 0.80); 0.60 (0.58 to 0.62); 0.70 (0.68 to 0.71)]. MACE occurred in 242 (12%) undergoing gated CT and 841(14%) of undergoing attenuation correction CT. LM/LAD CAC >400 AU was associated with the highest risk of MACE on gated (HR 12.0, 95% CI 7.96, 18.0, p<0.001) and attenuation correction CT (HR 4.21, 95% CI 3.48, 5.08, p<0.001). CONCLUSION: Vessel-specific CAC assessment with DL can be performed accurately and rapidly on gated CT and attenuation correction CT and provides important prognostic information.

20.
J Am Heart Assoc ; 13(5): e029850, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38410945

BACKGROUND: Women with chronic coronary disease are generally older than men and have more comorbidities but less atherosclerosis. We explored sex differences in revascularization, guideline-directed medical therapy, and outcomes among patients with chronic coronary disease with ischemia on stress testing, with and without invasive management. METHODS AND RESULTS: The ISCHEMIA (International Study of Comparative Health Effectiveness with Medical and Invasive Approaches) trial randomized patients with moderate or severe ischemia to invasive management with angiography, revascularization, and guideline-directed medical therapy, or initial conservative management with guideline-directed medical therapy alone. We evaluated the primary outcome (cardiovascular death, myocardial infarction, or hospitalization for unstable angina, heart failure, or resuscitated cardiac arrest) and other end points, by sex, in 1168 (22.6%) women and 4011 (77.4%) men. Invasive group catheterization rates were similar, with less revascularization among women (73.4% of invasive-assigned women revascularized versus 81.2% of invasive-assigned men; P<0.001). Women had less coronary artery disease: multivessel in 60.0% of invasive-assigned women and 74.8% of invasive-assigned men, and no ≥50% stenosis in 12.3% versus 4.5% (P<0.001). In the conservative group, 4-year catheterization rates were 26.3% of women versus 25.6% of men (P=0.72). Guideline-directed medical therapy use was lower among women with fewer risk factor goals attained. There were no sex differences in the primary outcome (adjusted hazard ratio [HR] for women versus men, 0.93 [95% CI, 0.77-1.13]; P=0.47) or the major secondary outcome of cardiovascular death/myocardial infarction (adjusted HR, 0.93 [95% CI, 0.76-1.14]; P=0.49), with no significant sex-by-treatment-group interactions. CONCLUSIONS: Women had less extensive coronary artery disease and, therefore, lower revascularization rates in the invasive group. Despite lower risk factor goal attainment, women with chronic coronary disease experienced similar risk-adjusted outcomes to men in the ISCHEMIA trial. REGISTRATION: URL: http://wwwclinicaltrials.gov. Unique identifier: NCT01471522.


Coronary Artery Disease , Myocardial Infarction , Myocardial Ischemia , Female , Humans , Male , Chronic Disease , Coronary Artery Disease/therapy , Coronary Artery Disease/complications , Goals , Myocardial Infarction/therapy , Myocardial Ischemia/therapy , Myocardial Ischemia/complications , Sex Characteristics , Treatment Outcome
...