Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Neuroimage Clin ; 43: 103658, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39178601

ABSTRACT

OBJECTIVE: In drug-resistant temporal lobe epilepsy (TLE), it is not well-established in how far surgery should target morphological anomalies to achieve seizure freedom. Here, we assessed interactions between structural brain compromise and surgery to identify region-specific predictors of seizure outcome. METHODS: We obtained pre- and post-operative 3D T1-weighted MRI in 55 TLE patients who underwent selective amygdalo-hippocampectomy (SAH) or anterior temporal lobectomy (ATL) and 40 age and sex-matched healthy subjects. We measured surface-based morphological alterations of the mesiotemporal lobe structures (hippocampus, amygdala, entorhinal and piriform cortices), the neocortex and the thalamus on both pre- and post-operative MRI. Using precise co-registration, in each patient we mapped the surgical cavity onto the MRI acquired before surgery, thereby quantifying the amount of pathological tissue resected; these features, together with the preoperative morphometric data, served as input to a supervised classification algorithm for postsurgical outcome prediction. RESULTS: On pre-operative MRI, patients who became seizure-free (TLE-SF) presented with severe ipsilateral amygdalar and hippocampal atrophy, while not seizure-free patients (TLE-NSF) displayed amygdalar hypertrophy. Stratifying patients based on the surgical approach, post-operative MRI showed similar patterns of mesiotemporal and thalamic changes, but divergent neocortical thinning affecting the parieto-temporo-occipital regions following ATL and the frontal lobes after SAH. Irrespective of the surgical approach, hippocampal atrophy on pre-operative MRI and its extent of resection were the most predictive features of seizure-freedom in 89% of patients (selected 100% across validations). SIGNIFICANCE: Our study indicates a critical role of the extent of resection of MRI-derived hippocampal morphological anomalies on seizure outcome. Precise pre-operative quantification of the mesiotemporal lobe provides non-invasive prognostics for individualized surgery.

2.
Elife ; 122024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196261

ABSTRACT

The hippocampus is a central modulator of the HPA-axis, impacting the regulation of stress on brain structure, function, and behavior. The current study assessed whether three different types of 3 months mental Training Modules geared towards nurturing (a) attention-based mindfulness, (b) socio-affective, or (c) socio-cognitive skills may impact hippocampal organization by reducing stress. We evaluated mental training-induced changes in hippocampal subfield volume and intrinsic functional connectivity, by combining longitudinal structural and resting-state fMRI connectivity analysis in 332 healthy adults. We related these changes to changes in diurnal and chronic cortisol levels. We observed increases in bilateral cornu ammonis volume (CA1-3) following the 3 months compassion-based module targeting socio-affective skills (Affect module), as compared to socio-cognitive skills (Perspective module) or a waitlist cohort with no training intervention. Structural changes were paralleled by relative increases in functional connectivity of CA1-3 when fostering socio-affective as compared to socio-cognitive skills. Furthermore, training-induced changes in CA1-3 structure and function consistently correlated with reductions in cortisol output. Notably, using a multivariate approach, we found that other subfields that did not show group-level changes also contributed to changes in cortisol levels. Overall, we provide a link between a socio-emotional behavioural intervention, changes in hippocampal subfield structure and function, and reductions in cortisol in healthy adults.


Too much stress is harmful to the brain and overall health, as it can lead to chronically high levels of the stress hormone cortisol. The part of the brain that regulates memory and emotions, called the hippocampus, is especially sensitive to stress because it has a high number of receptors that bind to cortisol. This connection may explain why stress can lead to memory lapses or strong emotions. Studies have shown that mental training exercises, such as mindfulness and meditation, may change the structure of the brain and reduce stress. However, the results from these experiments have been mixed due to the variation in mental practices used by different programs. Here, Valk, Engert et al. set out to find how distinct types of mental training affect the brain, focusing on the hippocampus and cortisol levels. The team used various magnetic resonance imaging techniques to study the hippocampus of 322 healthy adult volunteers who had undergone three months of mental training. The relationship between mental training, hippocampus size, and stress levels was complex when studying the results of each individual. However, when the results were grouped together, it revealed that volunteers who underwent training to increase empathy and compassion experienced expansion in parts of their hippocampus. As these areas of the brain increased in size, these individuals experienced corresponding reductions in cortisol levels. But volunteers who underwent mental training focused on attention or developing perspective did not experience such increases. These findings suggest that mental training to increase empathy and compassion alters brain structure and lowers cortisol levels. Future studies may explain how this happens, which could lead to improved mental training programs for mitigating stress.


Subject(s)
Hippocampus , Hydrocortisone , Magnetic Resonance Imaging , Humans , Hydrocortisone/metabolism , Male , Female , Hippocampus/physiology , Adult , Young Adult , Mindfulness , Circadian Rhythm/physiology , Stress, Psychological
3.
Neurology ; 103(3): e209524, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38981074

ABSTRACT

BACKGROUND AND OBJECTIVES: Temporal lobe epilepsy (TLE) is assumed to follow a steady course that is similar across patients. To date, phenotypic and temporal diversities of TLE evolution remain unknown. In this study, we aimed at simultaneously characterizing these sources of variability based on cross-sectional data. METHODS: We studied consecutive patients with TLE referred for evaluation by neurologists to the Montreal Neurological Institute epilepsy clinic, who underwent in-patient video EEG monitoring and multimodal imaging at 3 Tesla, comprising 3D T1 and fluid-attenuated inversion recovery and 2D diffusion-weighted MRI. The cohort included patients with drug-resistant epilepsy and patients with drug-responsive epilepsy. The neuropsychological evaluation included Wechsler Adult Intelligence Scale-III and Leonard tapping task. The control group consisted of participants without TLE recruited through advertisement and who underwent the same MRI acquisition as patients. Based on surface-based analysis of key MRI markers of pathology (gray matter morphology and white matter microstructure), the Subtype and Stage Inference algorithm estimated subtypes and stages of brain pathology to which individual patients were assigned. The number of subtypes was determined by running the algorithm 100 times and estimating mean and SD of disease trajectories and the consistency of patients' assignments based on 1,000 bootstrap samples. Effect of normal aging was subtracted from patients. We examined associations with clinical and cognitive parameters and utility for individualized predictions. RESULTS: We studied 82 patients with TLE (52 female, mean age 35 ± 10 years; 11 drug-responsive) and 41 control participants (23 male, mean age 32 ± 8 years). Among 57 operated, 43/37/20 had Engel-I outcome/hippocampal sclerosis/hippocampal isolated gliosis, respectively. We identified 3 trajectory subtypes: S1 (n = 35), led by ipsilateral hippocampal atrophy and gliosis, followed by white-matter damage; S2 (n = 27), characterized by bilateral neocortical atrophy, followed by ipsilateral hippocampal atrophy and gliosis; and S3 (n = 20), typified by bilateral limbic white-matter damage, followed by bilateral hippocampal gliosis. Patients showed high assignability to their subtypes and stages (>90% bootstrap agreement). S1 had the highest proportions of patients with early disease onset (effect size d = 0.27 vs S2, d = 0.73 vs S3), febrile convulsions (χ2 = 3.70), drug resistance (χ2 = 2.94), a positive MRI (χ2 = 8.42), hippocampal sclerosis (χ2 = 7.57), and Engel-I outcome (χ2 = 1.51), pFDR < 0.05 across all comparisons. S2 and S3 exhibited the intermediate and lowest proportions, respectively. Verbal IQ and digit span were lower in S1 (d = 0.65 and d = 0.50, pFDR < 0.05) and S2 (d = 0.76 and d = 1.09, pFDR < 0.05), compared with S3. We observed progressive decline in sequential motor tapping in S1 and S3 (T = -3.38 and T = -4.94, pFDR = 0.027), compared with S2 (T = 2.14, pFDR = 0.035). S3 showed progressive decline in digit span (T = -5.83, p = 0.021). Supervised classifiers trained on subtype and stage outperformed subtype-only and stage-only models predicting drug response in 73% ± 1.0% (vs 70% ± 1.4% and 63% ± 1.3%) and 76% ± 1.6% for Engel-I outcome (vs 71% ± 0.8% and 72% ± 1.1%), pFDR < 0.05 across all comparisons. DISCUSSION: Cross-sectional MRI-derived models provide reliable prognostic markers of TLE disease evolution, which follows distinct trajectories, each associated with divergent patterns of hippocampal and whole-brain structural alterations, as well as cognitive and clinical profiles.


Subject(s)
Disease Progression , Epilepsy, Temporal Lobe , Magnetic Resonance Imaging , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/physiopathology , Female , Male , Adult , Middle Aged , Cross-Sectional Studies , Electroencephalography , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/pathology , Young Adult , White Matter/diagnostic imaging , White Matter/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Neuropsychological Tests
4.
Neurology ; 103(3): e209528, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39008785

ABSTRACT

BACKGROUND AND OBJECTIVES: Neuroimaging studies in patients with temporal lobe epilepsy (TLE) show widespread brain network alterations beyond the mesiotemporal lobe. Despite the critical role of the cerebrovascular system in maintaining whole-brain structure and function, changes in cerebral blood flow (CBF) remain incompletely understood in the disease. Here, we studied whole-brain perfusion and vascular network alterations in TLE and assessed its associations with gray and white matter compromises and various clinical variables. METHODS: We included individuals with and without pharmaco-resistant TLE who underwent multimodal 3T MRI, including arterial spin labelling, structural, and diffusion-weighted imaging. Using surface-based MRI mapping, we generated individualized cortico-subcortical profiles of perfusion, morphology, and microstructure. Linear models compared regional CBF in patients with controls and related alterations to morphological and microstructural metrics. We further probed interregional vascular networks in TLE, using graph theoretical CBF covariance analysis. The effects of disease duration were explored to better understand the progressive changes in perfusion. We assessed the utility of perfusion in separating patients with TLE from controls using supervised machine learning. RESULTS: Compared with control participants (n = 38; mean ± SD age 34.8 ± 9.3 years; 20 females), patients with TLE (n = 24; mean ± SD age 35.8 ± 10.6 years; 12 females) showed widespread CBF reductions predominantly in fronto-temporal regions (Cohen d -0.69, 95% CI -1.21 to -0.16), consistent in a subgroup of patients who remained seizure-free after surgical resection of the seizure focus. Parallel structural profiling and network-based models showed that cerebral hypoperfusion may be partially constrained by gray and white matter changes (8.11% reduction in Cohen d) and topologically segregated from whole-brain perfusion networks (area under the curve -0.17, p < 0.05). Negative effects of progressive disease duration further targeted regional CBF profiles in patients (r = -0.54, 95% CI -0.77 to -0.16). Perfusion-derived classifiers discriminated patients from controls with high accuracy (71% [70%-82%]). Findings were robust when controlling for several methodological confounds. DISCUSSION: Our multimodal findings provide insights into vascular contributions to TLE pathophysiology affecting and extending beyond mesiotemporal structures and highlight their clinical potential in epilepsy diagnosis. As our work was cross-sectional and based on a single site, it motivates future longitudinal studies to confirm progressive effects, ideally in a multicentric setting.


Subject(s)
Cerebrovascular Circulation , Epilepsy, Temporal Lobe , Gray Matter , White Matter , Humans , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/diagnostic imaging , Female , Male , White Matter/diagnostic imaging , White Matter/pathology , White Matter/blood supply , Adult , Cerebrovascular Circulation/physiology , Gray Matter/diagnostic imaging , Gray Matter/blood supply , Gray Matter/pathology , Gray Matter/physiopathology , Magnetic Resonance Imaging , Middle Aged , Diffusion Magnetic Resonance Imaging , Supervised Machine Learning , Young Adult , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/pathology
5.
Brain ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39054915

ABSTRACT

Declarative memory encompasses episodic and semantic divisions. Episodic memory captures singular events with specific spatiotemporal relationships, while semantic memory houses context-independent knowledge. Behavioural and functional neuroimaging studies have revealed common and distinct neural substrates of both memory systems, implicating mesiotemporal lobe (MTL) regions such as the hippocampus and distributed neocortices. Here, we explored declarative memory system reorganization in patients with unilateral temporal lobe epilepsy (TLE) as a human disease model to test the impact of variable degrees of MTL pathology on memory function. Our cohort included 31 patients with TLE as well as 60 age and sex-matched healthy controls, and all participants underwent episodic and semantic retrieval tasks during a multimodal MRI session. The functional MRI tasks were closely matched in terms of stimuli and trial design. Capitalizing on non-linear connectome gradient mapping techniques, we derived task-based functional topographies during episodic and semantic memory states, both in the MTL and in neocortical networks. Comparing neocortical and hippocampal functional gradients between TLE patients and healthy controls, we observed a marked topographic reorganization of both neocortical and MTL systems during episodic memory states. Neocortical alterations were characterized by reduced functional differentiation in TLE across lateral temporal and midline parietal cortices in both hemispheres. In the MTL, on the other hand, patients presented with a more marked functional differentiation of posterior and anterior hippocampal segments ipsilateral to the seizure focus and pathological core, indicating perturbed intrahippocampal connectivity. Semantic memory reorganization was also found in bilateral lateral temporal and ipsilateral angular regions, while hippocampal functional topographies were unaffected. Leveraging MRI proxies of MTL pathology, we furthermore observed alterations in hippocampal microstructure and morphology that were associated with TLE-related functional reorganization during episodic memory. Moreover, correlation analysis and statistical mediation models revealed that these functional alterations contributed to behavioural deficits in episodic, but again not semantic memory in patients. Altogether, our findings suggest that semantic processes rely on distributed neocortical networks, while episodic processes are supported by a network involving both the hippocampus and neocortex. Alterations of such networks can provide a compact signature of state-dependent reorganization in conditions associated with MTL damage, such as TLE.

6.
Brain ; 147(7): 2483-2495, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38701342

ABSTRACT

Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.


Subject(s)
Anterior Temporal Lobectomy , Connectome , Epilepsy, Temporal Lobe , Temporal Lobe , Humans , Female , Male , Adult , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Temporal Lobe/pathology , Temporal Lobe/surgery , Temporal Lobe/diagnostic imaging , Anterior Temporal Lobectomy/methods , Middle Aged , Young Adult , Diffusion Tensor Imaging , Nerve Net/diagnostic imaging , Nerve Net/pathology , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/pathology
7.
Materials (Basel) ; 17(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38730790

ABSTRACT

The knowledge of the mechanical behavior of a 3D-printed material is fundamental for the 3D printing outbreaking technology to be considered for a range of applications. In this framework, the significance, reliability, and accuracy of the information obtained by testing material coupons assumes a pivotal role. The present work focuses on an evaluation of the static mechanical properties and failure modes of a 3D-printed short carbon fiber-reinforced polyamide in relation to the specimen's unique meso-structural morphology and water content. Within the manufacturing limitations of a commercially available printer, specimens of dedicated combinations of geometry and printing patterns were specifically conceived and tested. The specimens' meso-structure morphologies were investigated by micro-computed tomography. The material failure mechanisms were inferred from an analysis of the specimens' fracture surfaces and failure morphologies. The outcomes of the present analysis indicate that each test specimen retained proper mechanical properties, thereby suggesting that they should be accurately designed to deliver representative information of the underlying material beads or of their deposition layout. Suggestions on the adoption of preferred test specimens for evaluating specific material properties were proposed.

8.
Article in English | MEDLINE | ID: mdl-38770762

ABSTRACT

X-linked inhibitor of apoptosis (XIAP) deficiency is an infrequent inborn error of immunity caused by mutations in XIAP gene. Most cases present with absence of XIAP protein which can be detected by flow cytometry (FC), representing a rapid diagnostic method. However, since some genetic defects may not preclude protein expression, it is important to include a complementary functional test in the laboratory workup of these patients. L-selectin (CD62-L) is a molecule that is cleaved from the surface membrane of leukocytes upon stimulation of different receptors such as toll like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), including NOD2. Considering that XIAP deficiency impairs NOD2 signaling, we decided to assess CD62-L down-regulation by FC post-stimulation of neutrophils and monocytes with L18-muramyl Di-Peptide (L18-MDP), a NOD2 specific agonist, in order to develop a novel assay for the functional evaluation of patients with suspicion of XIAP defects. Whole blood samples from 20 healthy controls (HC) and four patients with confirmed molecular diagnosis of XIAP deficiency were stimulated with 200 ng/mL of L18-MDP for 2 h. Stimulation with 100 ng/mL of lipopolysaccharide (LPS) was carried out in parallel as a positive control of CD62-L shedding. CD62-L expression was evaluated by FC using an anti CD62-L- antibody and down-regulation was assessed by calculating the difference in CD62-L expression before and after stimulation, both in terms of percentage of CD62-L expressing cells (Δ%CD62-L) and median fluorescence intensity (ΔMFI%). Neutrophils and monocytes from XIAP deficient patients displayed a significantly diminished response to L18-MDP stimulation compared with HC (p < 0.0001), indicating a severely altered mechanism of CD62-L down-regulation following activation of NOD2-XIAP axis. On the other hand, the response to LPS stimulation was comparable between patients and heathy controls, suggesting preserved CD62-L shedding with a different stimulus. FC detection of CD62-L down-regulation in monocytes and neutrophils after whole blood stimulation with L18-MDP results in an effective and rapid functional test for the identification of XIAP deficient patients.

9.
J Clin Immunol ; 44(6): 138, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805138

ABSTRACT

BACKGROUND: Inborn Errors of Immunity (IEI) comprise several genetic anomalies that affect different components of the innate and adaptive responses, predisposing to infectious diseases, autoimmunity and malignancy. Different studies, mostly in adults, have reported a higher prevalence of cancer in IEI patients. However, in part due to the rarity of most of these IEI subtypes (classified in ten categories by the Primary Immunodeficiency Committee of the International Union of Immunological Societies), it is difficult to assess the risk in a large number of patients, especially during childhood. OBJECTIVE: To document the cancer prevalence in a pediatric cohort from a single referral institution, assessing their risk, together with the type of neoplasia within each IEI subgroup. METHOD: An extensive review of clinical records from 1989 to 2022 of IEI patients who at some point developed cancer before the age of sixteen. RESULTS: Of a total of 1642 patients with IEI diagnosis, 34 developed cancer before 16 years of age, showing a prevalence (2.1%) significantly higher than that of the general age matched population (0.22). Hematologic neoplasms (mostly lymphomas) were the most frequent malignancies. CONCLUSION: This study represents one of the few reports focused exclusively in pediatric IEI cases, describing not only the increased risk of developing malignancy compared with the age matched general population (a fact that must be taken into account by immunologists during follow-up) but also the association of the different neoplasms with particular IEI subtypes, thus disclosing the possible mechanisms involved.


Subject(s)
Neoplasms , Humans , Child , Prevalence , Neoplasms/epidemiology , Neoplasms/immunology , Neoplasms/etiology , Male , Female , Child, Preschool , Adolescent , Infant , Immunologic Deficiency Syndromes/epidemiology , Immunologic Deficiency Syndromes/immunology , Infant, Newborn
10.
Epilepsia ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642009

ABSTRACT

In drug-resistant epilepsy, magnetic resonance imaging (MRI) plays a central role in detecting lesions as it offers unmatched spatial resolution and whole-brain coverage. In addition, the last decade has witnessed continued developments in MRI-based computer-aided machine-learning techniques for improved diagnosis and prognosis. In this review, we focus on automated algorithms for the detection of hippocampal sclerosis and focal cortical dysplasia, particularly in cases deemed as MRI negative, with an emphasis on studies with histologically validated data. In addition, we discuss imaging-derived prognostic markers, including response to anti-seizure medication, post-surgical seizure outcome, and cognitive reserves. We also highlight the advantages and limitations of these approaches and discuss future directions toward person-centered care.

11.
Epilepsy Behav ; 155: 109722, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643660

ABSTRACT

OBJECTIVE: Temporal lobe epilepsy (TLE) is typically associated with pathology of the hippocampus, a key structure involved in relational memory, including episodic, semantic, and spatial memory processes. While it is widely accepted that TLE-associated hippocampal alterations underlie memory deficits, it remains unclear whether impairments relate to a specific cognitive domain or multiple ones. METHODS: We administered a recently validated task paradigm to evaluate episodic, semantic, and spatial memory in 24 pharmacoresistant TLE patients and 50 age- and sex-matched healthy controls. We carried out two-way analyses of variance to identify memory deficits in individuals with TLE relative to controls across different relational memory domains, and used partial least squares correlation to identify factors contributing to variations in relational memory performance across both cohorts. RESULTS: Compared to controls, TLE patients showed marked impairments in episodic and spatial memory, with mixed findings in semantic memory. Even when additionally controlling for age, sex, and overall cognitive function, between-group differences persisted along episodic and spatial domains. Moreover, age, diagnostic group, and hippocampal volume were all associated with relational memory behavioral phenotypes. SIGNIFICANCE: Our behavioral findings show graded deficits across relational memory domains in people with TLE, which provides further insights into the complex pattern of cognitive impairment in the condition.


Subject(s)
Epilepsy, Temporal Lobe , Memory Disorders , Memory, Episodic , Humans , Epilepsy, Temporal Lobe/psychology , Epilepsy, Temporal Lobe/complications , Male , Female , Adult , Memory Disorders/etiology , Middle Aged , Neuropsychological Tests , Hippocampus/pathology , Young Adult , Spatial Memory/physiology , Semantics
12.
Prog Neurobiol ; 236: 102604, 2024 May.
Article in English | MEDLINE | ID: mdl-38604584

ABSTRACT

Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.


Subject(s)
Connectome , Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Female , Male , Adult , Middle Aged , Magnetic Resonance Imaging , Young Adult , Brain/diagnostic imaging , Brain/physiopathology , Brain/pathology , Cohort Studies , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/pathology
13.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292996

ABSTRACT

Temporal lobe epilepsy (TLE) is one of the most common pharmaco-resistant epilepsies in adults. While hippocampal pathology is the hallmark of this condition, emerging evidence indicates that brain alterations extend beyond the mesiotemporal epicenter and affect macroscale brain function and cognition. We studied macroscale functional reorganization in TLE, explored structural substrates, and examined cognitive associations. We investigated a multisite cohort of 95 patients with pharmaco-resistant TLE and 95 healthy controls using state-of-the-art multimodal 3T magnetic resonance imaging (MRI). We quantified macroscale functional topographic organization using connectome dimensionality reduction techniques and estimated directional functional flow using generative models of effective connectivity. We observed atypical functional topographies in patients with TLE relative to controls, manifesting as reduced functional differentiation between sensory/motor networks and transmodal systems such as the default mode network, with peak alterations in bilateral temporal and ventromedial prefrontal cortices. TLE-related topographic changes were consistent in all three included sites and reflected reductions in hierarchical flow patterns between cortical systems. Integration of parallel multimodal MRI data indicated that these findings were independent of TLE-related cortical grey matter atrophy, but mediated by microstructural alterations in the superficial white matter immediately beneath the cortex. The magnitude of functional perturbations was robustly associated with behavioral markers of memory function. Overall, this work provides converging evidence for macroscale functional imbalances, contributing microstructural alterations, and their associations with cognitive dysfunction in TLE.

14.
Brain ; 146(9): 3923-3937, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37082950

ABSTRACT

Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.


Subject(s)
Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/pathology , Quality of Life , Brain/pathology , Magnetic Resonance Imaging , Brain Mapping
15.
Data Brief ; 47: 108999, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36936633

ABSTRACT

Obtaining precise and detailed parcellations of the human brain has been a major focus of neuroscience research. Here, we present a multimodal dataset, MYATLAS, based on histology-derived myeloarchitectonic parcellations for use with contemporary neuroimaging analyses software. The core of MYATLAS is a novel 3D neocortical, surface-based atlas derived from legacy myeloarchitectonic histology studies. Additionally, we provide digitized quantitative laminar profiles of intracortical myelin content derived from postmortem photometric data, cross-correlated with in vivo myeloarchitectonic features obtained by quantitative MRI mapping. Moreover, congregated, digitized and quality-improved Vogt-Vogt legacy histology data is made available. Finally, to allow for cross-modality correlations, maps of quantitative myelin estimates and corresponding von Economo-Koskinas' cytoarchitectonic features are also included. We share all necessary surface and volume-based registration files as well as shell scripts to facilitate applications of MYATLAS to future in vivo MRI studies.

16.
Epilepsia ; 64(4): 998-1011, 2023 04.
Article in English | MEDLINE | ID: mdl-36764677

ABSTRACT

OBJECTIVE: Temporal lobe epilepsy (TLE) is the most common pharmacoresistant epilepsy in adults. Here we profiled local neural function in TLE in vivo, building on prior evidence that has identified widespread structural alterations. Using resting-state functional magnetic resonance imaging (rs-fMRI), we mapped the whole-brain intrinsic neural timescales (INT), which reflect temporal hierarchies of neural processing. Parallel analysis of structural and diffusion MRI data examined associations with TLE-related structural compromise. Finally, we evaluated the clinical utility of INT. METHODS: We studied 46 patients with TLE and 44 healthy controls from two independent sites, and mapped INT changes in patients relative to controls across hippocampal, subcortical, and neocortical regions. We examined region-specific associations to structural alterations and explored the effects of age and epilepsy duration. Supervised machine learning assessed the utility of INT for identifying patients with TLE vs controls and left- vs right-sided seizure onset. RESULTS: Relative to controls, TLE showed marked INT reductions across multiple regions bilaterally, indexing faster changing resting activity, with strongest effects in the ipsilateral medial and lateral temporal regions, and bilateral sensorimotor cortices as well as thalamus and hippocampus. Findings were similar, albeit with reduced effect sizes, when correcting for structural alterations. INT reductions in TLE increased with advancing disease duration, yet findings differed from the aging effects seen in controls. INT-derived classifiers discriminated patients vs controls (balanced accuracy, 5-fold: 76% ± 2.65%; cross-site, 72%-83%) and lateralized the focus in TLE (balanced accuracy, 5-fold: 96% ± 2.10%; cross-site, 95%-97%), with high accuracy and cross-site generalizability. Findings were consistent across both acquisition sites and robust when controlling for motion and several methodological confounds. SIGNIFICANCE: Our findings demonstrate atypical macroscale function in TLE in a topography that extends beyond mesiotemporal epicenters. INT measurements can assist in TLE diagnosis, seizure focus lateralization, and monitoring of disease progression, which emphasizes promising clinical utility.


Subject(s)
Epilepsy, Temporal Lobe , Adult , Humans , Epilepsy, Temporal Lobe/diagnosis , Magnetic Resonance Imaging/methods , Hippocampus/diagnostic imaging , Temporal Lobe , Seizures
17.
Pediatr Neurol ; 141: 42-51, 2023 04.
Article in English | MEDLINE | ID: mdl-36773406

ABSTRACT

Artificial intelligence (AI) and a popular branch of AI known as machine learning (ML) are increasingly being utilized in medicine and to inform medical research. This review provides an overview of AI and ML (AI/ML), including definitions of common terms. We discuss the history of AI and provide instances of how AI/ML can be applied to pediatric neurology. Examples include imaging in neuro-oncology, autism diagnosis, diagnosis from charts, epilepsy, cerebral palsy, and neonatal neurology. Topics such as supervised learning, unsupervised learning, and reinforcement learning are discussed.


Subject(s)
Artificial Intelligence , Neurologists , Infant, Newborn , Child , Humans , Machine Learning
18.
Brain ; 146(8): 3404-3415, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36852571

ABSTRACT

Focal cortical dysplasia (FCD) type II is a highly epileptogenic developmental malformation and a common cause of surgically treated drug-resistant epilepsy. While clinical observations suggest frequent occurrence in the frontal lobe, mechanisms for such propensity remain unexplored. Here, we hypothesized that cortex-wide spatial associations of FCD distribution with cortical cytoarchitecture, gene expression and organizational axes may offer complementary insights into processes that predispose given cortical regions to harbour FCD. We mapped the cortex-wide MRI distribution of FCDs in 337 patients collected from 13 sites worldwide. We then determined its associations with (i) cytoarchitectural features using histological atlases by Von Economo and Koskinas and BigBrain; (ii) whole-brain gene expression and spatiotemporal dynamics from prenatal to adulthood stages using the Allen Human Brain Atlas and PsychENCODE BrainSpan; and (iii) macroscale developmental axes of cortical organization. FCD lesions were preferentially located in the prefrontal and fronto-limbic cortices typified by low neuron density, large soma and thick grey matter. Transcriptomic associations with FCD distribution uncovered a prenatal component related to neuroglial proliferation and differentiation, likely accounting for the dysplastic makeup, and a postnatal component related to synaptogenesis and circuit organization, possibly contributing to circuit-level hyperexcitability. FCD distribution showed a strong association with the anterior region of the antero-posterior axis derived from heritability analysis of interregional structural covariance of cortical thickness, but not with structural and functional hierarchical axes. Reliability of all results was confirmed through resampling techniques. Multimodal associations with cytoarchitecture, gene expression and axes of cortical organization indicate that prenatal neurogenesis and postnatal synaptogenesis may be key points of developmental vulnerability of the frontal lobe to FCD. Concordant with a causal role of atypical neuroglial proliferation and growth, our results indicate that FCD-vulnerable cortices display properties indicative of earlier termination of neurogenesis and initiation of cell growth. They also suggest a potential contribution of aberrant postnatal synaptogenesis and circuit development to FCD epileptogenicity.


Subject(s)
Focal Cortical Dysplasia , Malformations of Cortical Development , Humans , Reproducibility of Results , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/genetics , Malformations of Cortical Development/pathology , Brain/pathology , Magnetic Resonance Imaging/methods
19.
Polymers (Basel) ; 15(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36679227

ABSTRACT

Three-dimensional printed polymers offer unprecedented advantages for prosthetic applications, namely in terms of affordability and customisation. This work thus investigates the possibility of designing an additively manufactured prosthetic foot using continuous fibre-reinforced polymers as an alternative to composite laminate ones. A numerical approach was thus proposed and validated as a possible design tool for additively manufactured composite feet. This approach was based on explicit separate simulations of the infill, aiming to capture its homogenised engineering constants. The approach was validated on simple sandwich specimens with a different infill geometry: stiffness predictions were within the experimental standard deviation for 3D simulations. Such an approach was thus applied to redesign a laminated component of a foot prosthesis inspired by a commercial one with new additive technology. The new component was about 83% thicker than the reference one, with 1.6 mm of glass fibre skins out of about 22 mm of the total thickness. Its stiffness was within 5% of the reference laminated one. Overall, this work showed how additive manufacturing could be used as a low-cost alternative to manufacturing affordable prosthetic feet.

20.
J Infect Dev Ctries ; 17(12): 1714-1721, 2023 12 31.
Article in English | MEDLINE | ID: mdl-38252715

ABSTRACT

INTRODUCTION: This study aimed to characterize extended-spectrum beta-lactamase (ESBL) and carbapenemase genes in bacteria from the environment in Bobo-Dioulasso, Burkina Faso. METHODOLOGY: This study was conducted from January 18 to December 31, 2019. Environmental samples were collected from the effluents of Souro Sanou University Hospital Center and the wastewater treatment plant at Bobo-Dioulasso. MacConkey agar media supplemented with 4 µg/mL cefotaxime was used for bacterial growth, and identification of bacteria was performed using API 20E system (BioMerieux SA, Lyon, France). Antibiotic susceptibility testing, synergy test, carbapenem inactivation method and molecular characterization were performed. RESULTS: A total of 180 bacterial isolates were identified from the different sites with a predominance of Klebsiella oxytoca and Klebsiella pneumoniae (27.5%). All 180 bacterial isolates were ESBL producers and 18 (10.0%) of them produced carbapenemases. Out of the 180 bacterial isolates, DNAs of 98.9% (178/180) bacterial isolates were extracted and tested through polymerase chain reaction (PCR) for characterization of resistant genes. The study showed that 89.8% (160/178) carried the bla-CTX-M genes including 54.4 (87/160) from hospital effluents and 45.6 (73/160) from the wastewater treatment plant. Regarding the carriage of carbapenemase genes, 7.9 (14/178) blaNDM-1 was found in all the sites including 71.4% (10/14) from hospital effluents and 28.6 (4/14) from the wastewater treatment plant. blaOXA-48-like was only found in bacteria from hospital effluents and represented 2.2% (4/178). CONCLUSIONS: This study highlights the need to build hospital effluent treatment plants to reduce the load of resistant bacteria before discharging the effluents into the urban wastewater system.


Subject(s)
Bacteria , Bacterial Proteins , beta-Lactamases , Humans , Burkina Faso , beta-Lactamases/genetics , Bacteria/genetics , Hospitals, University
SELECTION OF CITATIONS
SEARCH DETAIL