Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(6): 107388, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763333

ABSTRACT

As part of the classical renin-angiotensin system, the peptidase angiotensin-converting enzyme (ACE) makes angiotensin II which has myriad effects on systemic cardiovascular function, inflammation, and cellular proliferation. Less well known is that macrophages and neutrophils make ACE in response to immune activation which has marked effects on myeloid cell function independent of angiotensin II. Here, we discuss both classical (angiotensin) and nonclassical functions of ACE and highlight mice called ACE 10/10 in which genetic manipulation increases ACE expression by macrophages and makes these mice much more resistant to models of tumors, infection, atherosclerosis, and Alzheimer's disease. In another model called NeuACE mice, neutrophils make increased ACE and these mice are much more resistant to infection. In contrast, ACE inhibitors reduce neutrophil killing of bacteria in mice and humans. Increased expression of ACE induces a marked increase in macrophage oxidative metabolism, particularly mitochondrial oxidation of lipids, secondary to increased peroxisome proliferator-activated receptor α expression, and results in increased myeloid cell ATP. ACE present in sperm has a similar metabolic effect, and the lack of ACE activity in these cells reduces both sperm motility and fertilization capacity. These nonclassical effects of ACE are not due to the actions of angiotensin II but to an unknown molecule, probably a peptide, that triggers a profound change in myeloid cell metabolism and function. Purifying and characterizing this peptide could offer a new treatment for several diseases and prove potentially lucrative.


Subject(s)
Myeloid Cells , Peptidyl-Dipeptidase A , Animals , Humans , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/genetics , Myeloid Cells/metabolism , Myeloid Cells/immunology , Myeloid Cells/drug effects , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Mice , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/drug effects , Renin-Angiotensin System/drug effects , Angiotensin II/pharmacology
2.
Res Sq ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38746124

ABSTRACT

An upregulation of angiotensin-converting enzyme (ACE) expression strengthens the immune activity of myeloid lineage cells as a natural functional regulation mechanism in our immunity. ACE10/10 mice, possessing increased ACE expression in macrophages, exhibit enhanced anti-tumor immunity and anti-bactericidal effects compared to those of wild type (WT) mice, while the detailed molecular mechanism has not been elucidated yet. In this report, we demonstrate that peroxisome proliferator-activated receptor alpha (PPARα) is a key molecule in the functional upregulation of macrophages induced by ACE. The expression of PPARα, a transcription factor regulating fatty acid metabolism-associated gene expressions, was upregulated in ACE-overexpressing macrophages. To pinpoint the role of PPARα in the enhanced immune function of ACE-overexpressing macrophages, we established a line with myeloid lineage-selective PPARα depletion employing the Lysozyme 2 (LysM)-Cre system based on ACE 10/10 mice (named A10-PPARα-Cre). Interestingly, A10-PPARα-Cre mice exhibited larger B16-F10-originated tumors than original ACE 10/10 mice. PPARα depletion impaired cytokine production and antigen-presenting activity in ACE-overexpressing macrophages, resulting in reduced tumor antigen-specific CD8+ T cell activity. Additionally, the anti-bactericidal effect was also impaired in A10-PPARα-Cre mice, resulting in similar bacterial colonization to WT mice in Methicillin-Resistant Staphylococcus aureus (MRSA) infection. PPARα depletion downregulated phagocytic activity and bacteria killing in ACE-overexpressing macrophages. Moreover, THP-1-ACE-derived macrophages, as a human model, expressing upregulated PPARα exhibited enhanced cytotoxicity against B16-F10 cells and MRSA killing. These activities were further enhanced by the PPARα agonist, WY 14643, while abolished by the antagonist, GW6471, in THP-1-ACE cells. Thus, PPARα is an indispensable molecule in ACE-dependent functional upregulation of macrophages in both mice and humans.

3.
J Biol Chem ; 300(1): 105486, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992807

ABSTRACT

Testis angiotensin-converting enzyme (tACE) plays a critical role in male fertility, but the mechanism is unknown. By using ACE C-domain KO (CKO) mice which lack tACE activity, we found that ATP in CKO sperm was 9.4-fold lower than WT sperm. Similarly, an ACE inhibitor (ACEi) reduced ATP production in mouse sperm by 72%. Metabolic profiling showed that tACE inactivation severely affects oxidative metabolism with decreases in several Krebs cycle intermediates including citric acid, cis-aconitic acid, NAD, α-ketoglutaric acid, succinate, and L-malic acid. We found that sperms lacking tACE activity displayed lower levels of oxidative enzymes (CISY, ODO1, MDHM, QCR2, SDHA, FUMH, CPT2, and ATPA) leading to a decreased mitochondrial respiration rate. The reduced energy production in CKO sperms leads to defects in their physiological functions including motility, acrosine activity, and fertilization in vitro and in vivo. Male mice treated with ACEi show severe impairment in reproductive capacity when mated with female mice. In contrast, an angiotensin II receptor blocker (ARB) had no effect. CKO sperms express significantly less peroxisome proliferators-activated receptor gamma (PPARγ) transcription factor, and its blockade eliminates the functional differences between CKO and WT sperms, indicating PPARγ might mediate the effects of tACE on sperm metabolism. Finally, in a cohort of human volunteers, in vitro treatment with the ramipril or a PPARγ inhibitor reduced ATP production in human sperm and hence its motility and acrosine activity. These findings may have clinical significance since millions of people take ACEi daily, including men who are reproductively active.


Subject(s)
Fertilization , PPAR gamma , Peptidyl-Dipeptidase A , Spermatozoa , Animals , Female , Humans , Male , Mice , Adenosine Triphosphate/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Fertilization/genetics , PPAR gamma/genetics , PPAR gamma/metabolism , Spermatozoa/drug effects , Spermatozoa/metabolism , Testis/enzymology , Mice, Inbred C57BL , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Mitochondrial Proteins/genetics , Gene Knockout Techniques , Oxidative Phosphorylation
4.
Front Immunol ; 14: 1278383, 2023.
Article in English | MEDLINE | ID: mdl-37928535

ABSTRACT

The pathogenesis of atherosclerosis is defined by impaired lipid handling by macrophages which increases intracellular lipid accumulation. This dysregulation of macrophages triggers the accumulation of apoptotic cells and chronic inflammation which contributes to disease progression. We previously reported that mice with increased macrophage-specific angiotensin-converting enzyme, termed ACE10/10 mice, resist atherosclerosis in an adeno-associated virus-proprotein convertase subtilisin/kexin type 9 (AAV-PCSK9)-induced model. This is due to increased lipid metabolism by macrophages which contributes to plaque resolution. However, the importance of ACE in peripheral blood monocytes, which are the primary precursors of lesional-infiltrating macrophages, is still unknown in atherosclerosis. Here, we show that the ACE-mediated metabolic phenotype is already triggered in peripheral blood circulating monocytes and that this functional modification is directly transferred to differentiated macrophages in ACE10/10 mice. We found that Ly-6Clo monocytes were increased in atherosclerotic ACE10/10 mice. The monocytes isolated from atherosclerotic ACE10/10 mice showed enhanced lipid metabolism, elevated mitochondrial activity, and increased adenosine triphosphate (ATP) levels which implies that ACE overexpression is already altered in atherosclerosis. Furthermore, we observed increased oxygen consumption (VO2), respiratory exchange ratio (RER), and spontaneous physical activity in ACE10/10 mice compared to WT mice in atherosclerotic conditions, indicating enhanced systemic energy consumption. Thus, ACE overexpression in myeloid lineage cells modifies the metabolic function of peripheral blood circulating monocytes which differentiate to macrophages and protect against atherosclerotic lesion progression due to better lipid metabolism.


Subject(s)
Atherosclerosis , Proprotein Convertase 9 , Animals , Mice , Atherosclerosis/pathology , Lipids , Myeloid Cells/pathology
5.
Cardiovasc Res ; 119(9): 1825-1841, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37225143

ABSTRACT

AIMS: The metabolic failure of macrophages to adequately process lipid is central to the aetiology of atherosclerosis. Here, we examine the role of macrophage angiotensin-converting enzyme (ACE) in a mouse model of PCSK9-induced atherosclerosis. METHODS AND RESULTS: Atherosclerosis in mice was induced with AAV-PCSK9 and a high-fat diet. Animals with increased macrophage ACE (ACE 10/10 mice) have a marked reduction in atherosclerosis vs. WT mice. Macrophages from both the aorta and peritoneum of ACE 10/10 express increased PPARα and have a profoundly altered phenotype to process lipids characterized by higher levels of the surface scavenger receptor CD36, increased uptake of lipid, increased capacity to transport long chain fatty acids into mitochondria, higher oxidative metabolism and lipid ß-oxidation as determined using 13C isotope tracing, increased cell ATP, increased capacity for efferocytosis, increased concentrations of the lipid transporters ABCA1 and ABCG1, and increased cholesterol efflux. These effects are mostly independent of angiotensin II. Human THP-1 cells, when modified to express more ACE, increase expression of PPARα, increase cell ATP and acetyl-CoA, and increase cell efferocytosis. CONCLUSION: Increased macrophage ACE expression enhances macrophage lipid metabolism, cholesterol efflux, efferocytosis, and it reduces atherosclerosis. This has implications for the treatment of cardiovascular disease with angiotensin II receptor antagonists vs. ACE inhibitors.


Subject(s)
Atherosclerosis , Proprotein Convertase 9 , Humans , Animals , Mice , Proprotein Convertase 9/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Lipid Metabolism , Cholesterol/metabolism , Macrophages/metabolism , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Angiotensins/metabolism , Adenosine Triphosphate/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism
6.
Cancers (Basel) ; 14(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36358691

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive disease with poor prognosis, which is mainly due to drug resistance. The biology determining the response to chemo-radiotherapy in HNSCC is poorly understood. Using clinical samples, we found that miR124-3p and miR766-3p are overexpressed in chemo-radiotherapy-resistant (non-responder) HNSCC, as compared to responder tumors. Our study shows that inhibition of miR124-3p and miR766-3p enhances the sensitivity of HNSCC cell lines, CAL27 and FaDu, to 5-fluorouracil and cisplatin (FP) chemotherapy and radiotherapy. In contrast, overexpression of miR766-3p and miR124-3p confers a resistance phenotype in HNSCC cells. The upregulation of miR124-3p and miR766-3p is associated with increased HNSCC cell invasion and migration. In a xenograft mouse model, inhibition of miR124-3p and miR766-3p enhanced the efficacy of chemo-radiotherapy with reduced growth of resistant HNSCC. For the first time, we identified that miR124-3p and miR766-3p attenuate expression of CREBRF and NR3C2, respectively, in HNSCC, which promotes aggressive tumor behavior by inducing the signaling axes CREB3/ATG5 and ß-catenin/c-Myc. Since miR124-3p and miR766-3p affect complementary pathways, combined inhibition of these two miRNAs shows an additive effect on sensitizing cancer cells to chemo-radiotherapy. In conclusion, our study demonstrated a novel miR124-3p- and miR766-3p-based biological mechanism governing treatment-resistant HNSCC, which can be targeted to improve clinical outcomes in HNSCC.

7.
Circ Res ; 131(1): 59-73, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35574842

ABSTRACT

BACKGROUND: Chronic renal inflammation has been widely recognized as a major promoter of several forms of high blood pressure including salt-sensitive hypertension. In diabetes, IL (interleukin)-6 induces salt sensitivity through a dysregulation of the epithelial sodium channel. However, the origin of this inflammatory process and the molecular events that culminates with an abnormal regulation of epithelial sodium channel and salt sensitivity in diabetes are largely unknown. METHODS: Both in vitro and in vivo approaches were used to investigate the molecular and cellular contributors to the renal inflammation associated with diabetic kidney disease and how these inflammatory components interact to develop salt sensitivity in db/db mice. RESULTS: Thirty-four-week-old db/db mice display significantly higher levels of IL-1ß in renal tubules compared with nondiabetic db/+ mice. Specific suppression of IL-1ß in renal tubules prevented salt sensitivity in db/db mice. A primary culture of renal tubular epithelial cells from wild-type mice releases significant levels of IL-1ß when exposed to a high glucose environment. Coculture of tubular epithelial cells and bone marrow-derived macrophages revealed that tubular epithelial cell-derived IL-1ß promotes the polarization of macrophages towards a proinflammatory phenotype resulting in IL-6 secretion. To evaluate whether macrophages are the cellular target of IL-1ß in vivo, diabetic db/db mice were transplanted with the bone marrow of IL-1R1 (IL-1 receptor type 1) knockout mice. db/db mice harboring an IL-1 receptor type 1 knockout bone marrow remained salt resistant, display lower renal inflammation and lower expression and activity of epithelial sodium channel compared with db/db transplanted with a wild-type bone marrow. CONCLUSIONS: Renal tubular epithelial cell-derived IL-1ß polarizes renal macrophages towards a proinflammatory phenotype that promotes salt sensitivity through the accumulation of renal IL-6. When tubular IL-1ß synthesis is suppressed or in db/db mice in which immune cells lack the IL-1R1, macrophage polarization is blunted resulting in no salt-sensitive hypertension.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Hypertension , Nephritis , Animals , Diabetes Mellitus/metabolism , Diabetic Nephropathies/genetics , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Inflammation/metabolism , Interleukin-6/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Nephritis/metabolism , Receptors, Interleukin-1/metabolism , Sodium Chloride, Dietary/toxicity
8.
Peptides ; 152: 170769, 2022 06.
Article in English | MEDLINE | ID: mdl-35182689

ABSTRACT

Angiotensin converting enzyme (ACE) is well known for its role producing the vasoconstrictor angiotensin II and ACE inhibitors are commonly used for treating hypertension and cardiovascular disease. However, ACE has many different substrates besides angiotensin I and plays a role in many different physiologic processes. Here, we discuss the role of ACE in the immune response. Several studies in mice indicate that increased expression of ACE by macrophages or neutrophils enhances the ability of these cells to respond to immune challenges such as infection, neoplasm, Alzheimer's disease, and atherosclerosis. Increased expression of ACE induces increased oxidative metabolism with an increase in cell content of ATP. In contrast, ACE inhibitors have the opposite effect, and in both humans and mice, administration of ACE inhibitors reduces the ability of neutrophils to kill bacteria. Understanding how ACE affects the immune response may provide a means to increase immunity in a variety of chronic conditions now not treated through immune manipulation.


Subject(s)
Hypertension , Peptidyl-Dipeptidase A , Angiotensin I/metabolism , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Hypertension/drug therapy , Hypertension/metabolism , Macrophages/metabolism , Mice , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism
9.
Sci Transl Med ; 13(604)2021 07 28.
Article in English | MEDLINE | ID: mdl-34321319

ABSTRACT

Angiotensin-converting enzyme inhibitors (ACEIs) are used by millions of patients to treat hypertension, diabetic kidney disease, and heart failure. However, these patients are often at increased risk of infection. To evaluate the impact of ACEIs on immune responses to infection, we compared the effect of an ACEI versus an angiotensin receptor blocker (ARB) on neutrophil antibacterial activity. ACEI exposure reduced the ability of murine neutrophils to kill methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Klebsiella pneumoniae in vitro. In vivo, ACEI-treated mice infected with MRSA had increased bacteremia and tissue bacteria counts compared to mice treated with an ARB or with no drug. Similarly, ACEIs, but not ARBs, increased the incidence of MRSA-induced infective endocarditis in mice with aortic valve injury. Neutrophils from ACE knockout (KO) mice or mice treated with an ACEI produced less leukotriene B4 (LTB4) upon stimulation with MRSA or lipopolysaccharide, whereas neutrophils overexpressing ACE produced more LTB4 compared to wild-type neutrophils. As a result of reduced LTB4 production, ACE KO neutrophils showed decreased survival signaling and increased apoptosis. In contrast, neutrophils overexpressing ACE had an enhanced survival phenotype. Last, in a cohort of human volunteers receiving the ACEI ramipril for 1 week, ACEI administration reduced neutrophil superoxide and reactive oxygen species production and neutrophils isolated from volunteers during ramipril treatment had reduced bactericidal activity. Together, these data demonstrate that ACEI treatment, but not ARB treatment, can reduce the bacterial killing ability of neutrophils.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Methicillin-Resistant Staphylococcus aureus , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Humans , Mice , Mice, Knockout , Neutrophils
10.
Mol Cell Endocrinol ; 529: 111257, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33781839

ABSTRACT

The observation that all components of the renin angiotensin system (RAS) are expressed in the kidney and the fact that intratubular angiotensin (Ang) II levels greatly exceed the plasma concentration suggest that the synthesis of renal Ang II occurs independently of the circulating RAS. One of the main components of this so-called intrarenal RAS is angiotensin-converting enzyme (ACE). Although the role of ACE in renal disease is demonstrated by the therapeutic effectiveness of ACE inhibitors in treating several conditions, the exact contribution of intrarenal versus systemic ACE in renal disease remains unknown. Using genetically modified mouse models, our group demonstrated that renal ACE plays a key role in the development of several forms of hypertension. Specifically, although ACE is expressed in different cell types within the kidney, its expression in renal proximal tubular cells is essential for the development of high blood pressure. Besides hypertension, ACE is involved in several other renal diseases such as diabetic kidney disease, or acute kidney injury even when blood pressure is normal. In addition, studies suggest that ACE might mediate at least part of its effect through mechanisms that are independent of the Ang I conversion into Ang II and involve other substrates such as N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), Ang-(1-7), and bradykinin, among others. In this review, we summarize the recent advances in understanding the contribution of intrarenal ACE to different pathological conditions and provide insight into the many roles of ACE besides the well-known synthesis of Ang II.


Subject(s)
Acute Kidney Injury/enzymology , Angiotensin I/metabolism , Diabetic Nephropathies/enzymology , Hypertension/enzymology , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/metabolism , Renin-Angiotensin System/genetics , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Angiotensin I/genetics , Angiotensin II/genetics , Angiotensin II/metabolism , Animals , Blood Pressure/genetics , Bradykinin/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Gene Expression Regulation , Humans , Hypertension/genetics , Hypertension/pathology , Kidney/enzymology , Kidney/pathology , Mice , Oligopeptides/metabolism , Peptide Fragments/genetics , Peptidyl-Dipeptidase A/genetics , Signal Transduction , Water-Electrolyte Balance/genetics
11.
J Am Soc Nephrol ; 32(5): 1131-1149, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33731332

ABSTRACT

BACKGROUND: Hypertension is considered a major risk factor for the progression of diabetic kidney disease. Type 2 diabetes is associated with increased renal sodium reabsorption and salt-sensitive hypertension. Clinical studies show that men have higher risk than premenopausal women for the development of diabetic kidney disease. However, the renal mechanisms that predispose to salt sensitivity during diabetes and whether sexual dimorphism is associated with these mechanisms remains unknown. METHODS: Female and male db/db mice exposed to a high-salt diet were used to analyze the progression of diabetic kidney disease and the development of hypertension. RESULTS: Male, 34-week-old, db/db mice display hypertension when exposed to a 4-week high-salt treatment, whereas equivalently treated female db/db mice remain normotensive. Salt-sensitive hypertension in male mice was associated with no suppression of the epithelial sodium channel (ENaC) in response to a high-salt diet, despite downregulation of several components of the intrarenal renin-angiotensin system. Male db/db mice show higher levels of proinflammatory cytokines and more immune-cell infiltration in the kidney than do female db/db mice. Blocking inflammation, with either mycophenolate mofetil or by reducing IL-6 levels with a neutralizing anti-IL-6 antibody, prevented the development of salt sensitivity in male db/db mice. CONCLUSIONS: The inflammatory response observed in male, but not in female, db/db mice induces salt-sensitive hypertension by impairing ENaC downregulation in response to high salt. These data provide a mechanistic explanation for the sexual dimorphism associated with the development of diabetic kidney disease and salt sensitivity.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Epithelial Sodium Channels/physiology , Hypertension/etiology , Sodium Chloride, Dietary/administration & dosage , Animals , Cytokines/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Disease Models, Animal , Female , Hypertension/metabolism , Hypertension/pathology , Inflammation , Male , Mice , Sex Factors , Sodium Chloride, Dietary/adverse effects
12.
Oncoimmunology ; 10(1): 1870811, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33537175

ABSTRACT

Granulocytes are key players in cancer metastasis. While tumor-induced de novo expansion of immunosuppressive myeloid-derived suppressor cells (MDSCs) is well-described, the fate and contribution of terminally differentiated mature neutrophils to the metastatic process remain poorly understood. Here, we show that in experimental metastatic cancer models, CXCR4hiCD62Llo aged neutrophils accumulate via disruption of neutrophil circadian homeostasis and direct stimulation of neutrophil aging mediated by angiotensin II. Compared to CXCR4loCD62Lhi naive neutrophils, aged neutrophils more robustly promote tumor migration and support metastasis through the increased release of several metastasis-promoting factors, including neutrophil extracellular traps (NETs), reactive oxygen species, vascular endothelial growth factors, and metalloproteinases (MMP-9). Adoptive transfer of aged neutrophils significantly enhanced metastasis of breast (4T1) and melanoma (B16LS9) cancer cells to the liver, and these effects were predominantly mediated by NETs. Our results highlight that in addition to modulating MDSC production, targeting aged neutrophil clearance and homeostasis may be effective in reducing cancer metastasis.


Subject(s)
Extracellular Traps , Melanoma , Myeloid-Derived Suppressor Cells , Aged , Granulocytes , Humans , L-Selectin , Neutrophils , Receptors, CXCR4
13.
Br J Pharmacol ; 177(20): 4766-4781, 2020 10.
Article in English | MEDLINE | ID: mdl-32851652

ABSTRACT

BACKGROUND AND PURPOSE: The AT2 receptor plays a role in metabolism by opposing the actions triggered by the AT1 receptors. Activation of AT2 receptors has been shown to enhance insulin sensitivity in both normal and insulin resistance animal models. In this study, we investigated the mechanism by which AT2 receptors activation improves metabolism in diabetic mice. EXPERIMENTAL APPROACH: Female diabetic (db/db) and non-diabetic (db/+) mice were treated for 1 month with the selective AT2 agonist, compound 21 (C21, 0.3 mg·kg-1 ·day-1 , s.c.). To evaluate whether the effects of C21 depend on NO production, a subgroup of mice was treated with C21 plus a sub-pressor dose of the NOS inhibitor l-NAME (0.1 mg·ml-1 , drinking water). KEY RESULTS: C21-treated db/db mice displayed improved glucose and pyruvate tolerance compared with saline-treated db/db mice. Also, C21-treated db/db mice showed reduced liver weight and decreased hepatic lipid accumulation compared with saline-treated db/db mice. Insulin signalling analysis showed increased phosphorylation of the insulin receptor, Akt and FOXO1 in the livers of C21-treated db/db mice compared with saline-treated counterparts. These findings were associated with increased adiponectin levels in plasma and adipose tissue and reduced adipocyte size in inguinal fat. The beneficial effects of AT2 receptors activation were associated with increased eNOS phosphorylation and higher levels of NO metabolites and were abolished by l-NAME. CONCLUSION AND IMPLICATIONS: Chronic C21 infusion exerts beneficial metabolic effects in female diabetic db/db mice, alleviating type 2 diabetes complications, through a mechanism that involves NO production.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Female , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Receptor, Angiotensin, Type 2
14.
Cell Mol Biol Lett ; 25: 31, 2020.
Article in English | MEDLINE | ID: mdl-32508938

ABSTRACT

Angiotensin-converting enzyme (ACE), a dicarboxypeptidase, plays a major role in the regulation of blood pressure by cleaving angiotensin I into angiotensin II (Ang II), a potent vasoconstrictor. Because of its wide substrate specificity and tissue distribution, ACE affects many diverse biological processes. In inflammatory diseases, including granuloma, atherosclerosis, chronic kidney disease and bacterial infection, ACE expression gets upregulated in immune cells, especially in myeloid cells. With increasing evidences connecting ACE functions to the pathogenesis of these acquired diseases, it is suggested that ACE plays a vital role in immune functions. Recent studies with mouse models of bacterial infection and tumor suggest that ACE plays an important role in the immune responses of myeloid cells. Inhibition of ACE suppresses neutrophil immune response to bacterial infection. In contrast, ACE overexpression in myeloid cells strongly induced bacterial and tumor resistance in mice. A detailed biochemical understanding of how ACE activates myeloid cells and which ACE peptide(s) (substrate or product) mediate these effects could lead to the development of novel therapies for boosting immunity against a variety of stimuli, including bacterial infection and tumor.


Subject(s)
Hematopoiesis/immunology , Inflammation/immunology , Myeloid Cells/immunology , Peptidyl-Dipeptidase A/physiology , Adaptive Immunity , Animals , Bacterial Infections/immunology , Humans , Mice , Neoplasms/immunology , Peptidyl-Dipeptidase A/immunology
15.
Curr Hypertens Rep ; 22(1): 4, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31916032

ABSTRACT

PURPOSE OF REVIEW: To review recent studies exploring how myeloid cell overexpression of angiotensin-converting enzyme (ACE) affects the immune response and to formulate an approach for considering the effectiveness of inflammation in cardiovascular disease RECENT FINDINGS: While it is widely appreciated that the renin-angiotensin system affects aspects of inflammation through the action of angiotensin II, new studies reveal a previously unknown role of ACE in myeloid cell biology. This was apparent from analysis of two mouse lines genetically modified to overexpress ACE in monocytes/macrophages or neutrophils. Cells overexpressing ACE demonstrated an increased immune response. For example, mice with increased macrophage ACE expression have increased resistance to melanoma, methicillin-resistant Staphylococcus aureus, a mouse model of Alzheimer's disease, and ApoE-knockout-induced atherosclerosis. These data indicate the profound effect of increasing myeloid cell function. Further, they suggest that an appropriate way to evaluate inflammation in both acute and chronic diseases is to ask whether the inflammatory infiltrate is sufficient to eliminate the immune challenge. The expression of ACE by myeloid cells induces a heightened immune response by these cells. The overexpression of ACE is associated with immune function beyond that possible by wild type (WT) myeloid cells. A heightened immune response effectively resolves disease in a variety of acute and chronic models of disease including models of Alzheimer's disease and atherosclerosis.


Subject(s)
Hypertension , Inflammation , Methicillin-Resistant Staphylococcus aureus , Peptidyl-Dipeptidase A , Animals , Chronic Disease , Humans , Mice , Myeloid Cells , Peptidyl-Dipeptidase A/metabolism
16.
J Biol Chem ; 295(5): 1369-1384, 2020 01 31.
Article in English | MEDLINE | ID: mdl-31871049

ABSTRACT

Angiotensin-converting enzyme (ACE) affects blood pressure. In addition, ACE overexpression in myeloid cells increases their immune function. Using MS and chemical analysis, we identified marked changes of intermediate metabolites in ACE-overexpressing macrophages and neutrophils, with increased cellular ATP (1.7-3.0-fold) and Krebs cycle intermediates, including citrate, isocitrate, succinate, and malate (1.4-3.9-fold). Increased ATP is due to ACE C-domain catalytic activity; it is reversed by an ACE inhibitor but not by an angiotensin II AT1 receptor antagonist. In contrast, macrophages from ACE knockout (null) mice averaged only 28% of the ATP levels found in WT mice. ACE overexpression does not change cell or mitochondrial size or number. However, expression levels of the electron transport chain proteins NDUFB8 (complex I), ATP5A, and ATP5ß (complex V) are significantly increased in macrophages and neutrophils, and COX1 and COX2 (complex IV) are increased in macrophages overexpressing ACE. Macrophages overexpressing ACE have increased mitochondrial membrane potential (24% higher), ATP production rates (29% higher), and maximal respiratory rates (37% higher) compared with WT cells. Increased cellular ATP underpins increased myeloid cell superoxide production and phagocytosis associated with increased ACE expression. Myeloid cells overexpressing ACE indicate the existence of a novel pathway in which myeloid cell function can be enhanced, with a key feature being increased cellular ATP.


Subject(s)
Adenosine Triphosphate/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Myeloid Cells/metabolism , Peptidyl-Dipeptidase A/metabolism , Animals , Citric Acid Cycle , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Electron Transport Complex I/metabolism , Macrophages/immunology , Macrophages/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Proton-Translocating ATPases/metabolism , Neutrophils/metabolism , Oxidation-Reduction , Oxidative Stress , Peptidyl-Dipeptidase A/genetics , Up-Regulation
17.
Biochem Biophys Res Commun ; 520(3): 573-579, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31615657

ABSTRACT

BACKGROUND: Macrophages are ubiquitous in all stages of atherosclerosis, exerting tremendous impact on lesion progression and plaque stability. Because macrophages in atherosclerotic plaques express angiotensin-converting enzyme (ACE), current dogma posits that local myeloid-mediated effects worsen the disease. In contrast, we previously reported that myeloid ACE overexpression augments macrophage resistance to various immune challenges, including tumors, bacterial infection and Alzheimer's plaque deposition. Here, we sought to assess the impact of myeloid ACE on atherosclerosis. METHODS: A mouse model in which ACE is overexpressed in myelomonocytic lineage cells, called ACE10, was generated and sequentially crossed with ApoE-deficient mice to create ACE10/10ApoE-/- (ACE10/ApoE). Control mice were ACEWT/WTApoE-/- (WT/ApoE). Atherosclerosis was induced using an atherogenic diet alone, or in combination with unilateral nephrectomy plus deoxycorticosterone acetate (DOCA) salt for eight weeks. RESULTS: With an atherogenic diet alone or in combination with DOCA, the ACE10/ApoE mice showed significantly less atherosclerotic plaques compared to their WT/ApoE counterparts (p < 0.01). When recipient ApoE-/- mice were reconstituted with ACE10/10 bone marrow, these mice showed significantly reduced lesion areas compared to recipients reconstituted with wild type bone marrow. Furthermore, transfer of ACE-deficient bone marrow had no impact on lesion area. CONCLUSION: Our data indicate that while myeloid ACE may not be required for atherosclerosis, enhanced ACE expression paradoxically reduced disease progression.


Subject(s)
Atherosclerosis/enzymology , Atherosclerosis/prevention & control , Myeloid Cells/enzymology , Peptidyl-Dipeptidase A/metabolism , Animals , Atherosclerosis/genetics , Blood Pressure , Bone Marrow Transplantation , Cell Lineage/genetics , Cholesterol/blood , Diet, Atherogenic , Disease Models, Animal , Disease Progression , Humans , Macrophages/enzymology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Myeloid Cells/pathology , Peptidyl-Dipeptidase A/genetics , Up-Regulation
18.
Sci Immunol ; 4(36)2019 06 28.
Article in English | MEDLINE | ID: mdl-31253642

ABSTRACT

The cause of most hypertensive disease is unclear, but inflammation appears critical in disease progression. However, how elevated blood pressure initiates inflammation is unknown, as are the effects of high blood pressure on innate and adaptive immune responses. We now report that hypertensive mice have increased T cell responses to antigenic challenge and develop more severe T cell-mediated immunopathology. A root cause for this is hypertension-induced erythrocyte adenosine 5'-triphosphate (ATP) release, leading to an increase in plasma ATP levels, which begins soon after the onset of hypertension and stimulates P2X7 receptors on antigen-presenting cells (APCs), increasing APC expression of CD86. Hydrolyzing ATP or blocking the P2X7 receptor eliminated hypertension-induced T cell hyperactivation. In addition, pharmacologic or genetic blockade of P2X7 receptor activity suppressed the progression of hypertension. Consistent with the results in mice, we also found that untreated human hypertensive patients have significantly elevated plasma ATP levels compared with treated hypertensive patients or normotensive controls. Thus, a hypertension-induced increase in extracellular ATP triggers augmented APC and T cell function and contributes to the immune-mediated pathologic changes associated with hypertensive disease.


Subject(s)
Adenosine Triphosphate/immunology , Hypertension/immunology , Adenosine Triphosphate/blood , Adult , Aged , Animals , Antigens/immunology , B7-2 Antigen/immunology , Dendritic Cells/immunology , Diabetes Mellitus, Type 1/immunology , Female , Hepatitis/immunology , Humans , Hypertension/blood , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Ovalbumin/immunology , Receptors, Purinergic P2X7/genetics , T-Lymphocytes/immunology
19.
Anal Chem ; 91(10): 6440-6453, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31021607

ABSTRACT

Angiotensin-converting enzyme (ACE) converts angiotensin I into the potent vasoconstrictor angiotensin II, which regulates blood pressure. However, ACE activity is also essential for other physiological functions, presumably through processing of peptides unrelated to angiotensin. The goal of this study was to identify novel natural substrates and products of ACE through a series of mass-spectrometric experiments. This included comparing the ACE-treated and untreated plasma peptidomes of ACE-knockout (KO) mice, validation with select synthetic peptides, and a quantitative in vivo study of ACE substrates in mice with distinct genetic ACE backgrounds. In total, 244 natural peptides were identified ex vivo as possible substrates or products of ACE, demonstrating high promiscuity of the enzyme. ACE prefers to cleave substrates with Phe or Leu at the C-terminal P2' position and Gly in the P6 position. Pro in P1' and Iso in P1 are typical residues in peptides that ACE does not cleave. Several of the novel ACE substrates are known to have biological activities, including a fragment of complement C3, the spasmogenic C3f, which was processed by ACE ex vivo and in vitro. Analyses with N-domain-inactive (NKO) ACE allowed clarification of domain selectivity toward substrates. The in vivo ACE-substrate concentrations in WT, transgenic ACE-KO, NKO, and CKO mice correspond well with the in vitro observations in that higher levels of the ACE substrates were observed when the processing domain was knocked out. This study highlights the vast extent of ACE promiscuity and provides a valuable platform for further investigations of ACE functionality.


Subject(s)
Peptides/metabolism , Peptidyl-Dipeptidase A/metabolism , Plasma/enzymology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Gene Expression Regulation, Enzymologic/drug effects , Mice , Mice, Knockout , Peptidyl-Dipeptidase A/genetics , Ramipril/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
20.
J Biol Chem ; 294(12): 4368-4380, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30670595

ABSTRACT

Angiotensin-converting enzyme (ACE) can hydrolyze many peptides and plays a central role in controlling blood pressure. Moreover, ACE overexpression in monocytes and macrophages increases resistance of mice to tumor growth. ACE is composed of two independent catalytic domains. Here, to investigate the specific role of each domain in tumor resistance, we overexpressed either WT ACE (Tg-ACE mice) or ACE lacking N- or C-domain catalytic activity (Tg-NKO and Tg-CKO mice) in the myeloid cells of mice. Tg-ACE and Tg-NKO mice exhibited strongly suppressed growth of B16-F10 melanoma because of increased ACE expression in macrophages, whereas Tg-CKO mice resisted melanoma no better than WT animals. The effect of ACE overexpression reverted to that of the WT enzyme with an ACE inhibitor but not with an angiotensin II type 1 (AT1) receptor antagonist. ACE C-domain overexpression in macrophages drove them toward a pronounced M1 phenotype upon tumor stimulation, with increased activation of NF-κB and signal transducer and activator of transcription 1 (STAT1) and decreased STAT3 and STAT6 activation. Tumor necrosis factor α (TNFα) is important for M1 activation, and TNFα blockade reverted Tg-NKO macrophages to a WT phenotype. Increased ACE C-domain expression increased the levels of reactive oxygen species (ROS) and of the transcription factor C/EBPß in macrophages, important stimuli for TNFα expression, and decreased expression of several M2 markers, including interleukin-4Rα. Natural ACE C-domain-specific substrates are not well-described, and we propose that the peptide(s) responsible for the striking ACE-mediated enhancement of myeloid function are substrates/products of the ACE C-domain.


Subject(s)
Cell Polarity , Macrophages/cytology , Melanoma, Experimental/pathology , Peptidyl-Dipeptidase A/metabolism , Animals , Catalysis , Cell Line, Tumor , Cell Survival , Gene Expression Regulation, Neoplastic , Macrophages/immunology , Melanoma, Experimental/enzymology , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Mice , Mice, Transgenic , NF-kappa B/metabolism , Peptidyl-Dipeptidase A/chemistry , STAT1 Transcription Factor/metabolism , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...