Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 921: 171050, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38369139

ABSTRACT

This study aims to assess the effect of different urban configuration regarding the choice of wastewater management of the district with source separation systems. Understanding this link can guide researchers, and also urban actors, in order to choose the best source separation solution to implement in a specific urban configuration. For this purpose, an integrated modelling approach was used to model the district with different types of urban planning, the water resources recovery facility (WRRF) and create a life cycle inventory to carry out a life cycle assessment (LCA). Six different urban configurations were tested with three different source separation scenarios and compared with an advanced WRRF with high level of nutrients and organic matter recovery. This study concludes that urine source separation is beneficial compared to advanced WWRF for all the urban configurations. Sewer construction was identified as the main contributor to environmental impact for the low-density configuration (pavilions), limiting the benefits of source separation in this urban settlement. Blackwater separation with a decentralised treatment is only beneficial for high densely populated area. Treatment of blackwater and greywater for reuse, has greater impact than reference scenario, in all urban configurations, due to high energy consumption for greywater treatment. Future research should therefore explore technical solutions for limiting the energy consumption.

2.
Water Sci Technol ; 86(3): 482-495, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35960832

ABSTRACT

Stringent discharge regulations are encouraging researchers to create innovative and sustainable wastewater treatment solutions. Urine source separation (USS) is among the potent approaches that may reduce nutrient peak loads in the influent wastewater and improve nutrient recovery. A phenomenological model was used to simulate dynamic influent properties and predict the advantages gained from implementing USS in an urban water basin. Several scenarios were investigated assuming different levels of deployment: at the entire city, or specifically in office buildings for men's urine only, or for both men and women employees. The results confirmed that all scenarios of urine source separation offered benefits at the treatment plant in terms of reducing nitrogen influent load. The economic benefits in terms of reducing energy consumption for nitrification and decreasing methanol addition for denitrification were quantified, and results confirmed environmental advantages gained from different USS scenarios. Despite larger advantages gained from a global USS rate in an entire city, implementation of a specific USS in office buildings would remain more feasible from a logistical perspective. A significant benefit in terms of reducing greenhouse gas emissions is demonstrated and this was especially due to the high level of N2O emissions avoided in nitrifying biological aerated filter.


Subject(s)
Water Purification , Water , Denitrification , Female , Humans , Male , Nitrification , Nitrogen , Nitrous Oxide/analysis , Wastewater , Water Purification/methods
3.
Ecology ; 102(5): e03308, 2021 05.
Article in English | MEDLINE | ID: mdl-33577089

ABSTRACT

The importance of climate, habitat structure, and higher trophic levels on microbial diversity is only beginning to be understood. Here, we examined the influence of climate variables, plant morphology, and the abundance of aquatic invertebrates on the microbial biodiversity of the northern pitcher plant Sarracenia purpurea. The plant's cup-shaped leaves fill with rainwater and support a miniature, yet full-fledged, ecosystem with a diverse microbiome that decomposes captured prey and a small network of shredding and filter-feeding aquatic invertebrates that feed on microbes. We characterized pitcher microbiomes of 108 plants sampled at 36 sites from Florida to Quebec. Structural equation models revealed that annual precipitation and temperature, plant size, and midge abundance had direct effects on microbiome taxonomic and phylogenetic diversity. Climate variables also exerted indirect effects through plant size and midge abundance. Further, spatial structure and climate influenced taxonomic composition, but not phylogenetic composition. Our results suggest that direct effects of midge abundance and climate and indirect effects of climate through its effect on plant-associated factors lead to greater richness of microbial phylotypes in warmer, wetter sites.


Subject(s)
Microbiota , Sarraceniaceae , Ecosystem , Florida , Food Chain , Microbial Interactions , Phylogeny , Quebec
4.
Biol Rev Camb Philos Soc ; 94(1): 16-36, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29923657

ABSTRACT

Network approaches to ecological questions have been increasingly used, particularly in recent decades. The abstraction of ecological systems - such as communities - through networks of interactions between their components indeed provides a way to summarize this information with single objects. The methodological framework derived from graph theory also provides numerous approaches and measures to analyze these objects and can offer new perspectives on established ecological theories as well as tools to address new challenges. However, prior to using these methods to test ecological hypotheses, it is necessary that we understand, adapt, and use them in ways that both allow us to deliver their full potential and account for their limitations. Here, we attempt to increase the accessibility of network approaches by providing a review of the tools that have been developed so far, with - what we believe to be - their appropriate uses and potential limitations. This is not an exhaustive review of all methods and metrics, but rather, an overview of tools that are robust, informative, and ecologically sound. After providing a brief presentation of species interaction networks and how to build them in order to summarize ecological information of different types, we then classify methods and metrics by the types of ecological questions that they can be used to answer from global to local scales, including methods for hypothesis testing and future perspectives. Specifically, we show how the organization of species interactions in a community yields different network structures (e.g., more or less dense, modular or nested), how different measures can be used to describe and quantify these emerging structures, and how to compare communities based on these differences in structures. Within networks, we illustrate metrics that can be used to describe and compare the functional and dynamic roles of species based on their position in the network and the organization of their interactions as well as associated new methods to test the significance of these results. Lastly, we describe potential fruitful avenues for new methodological developments to address novel ecological questions.

5.
Water Res ; 126: 50-59, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28918078

ABSTRACT

Innovative treatment technologies and management methods are necessary to valorise the constituents of wastewater, in particular nutrients from urine (highly concentrated and can have significant impacts related to artificial fertilizer production). The FP7 project, ValuefromUrine, proposed a new two-step process (called VFU) based on struvite precipitation and microbial electrolysis cell (MEC) to recover ammonia, which is further transformed into ammonium sulphate. The environmental and economic impacts of its prospective implementation in the Netherlands were evaluated based on life cycle assessment (LCA) methodology and operational costs. In order to tackle the lack of stable data from the pilot plant and the complex effects on wastewater treatment plant (WWTP), process simulation was coupled with LCA and costs assessment using the Python programming language. Additionally, particular attention was given to the propagation and analysis of inputs uncertainties. Five scenarios of VFU implementation were compared to the conventional treatment of 1 m3 of wastewater. Inventory data were obtained from SUMO software for the WWTP operation. LCA was based on Brightway2 software (using ecoinvent database and ReCiPe method). The results, based on 500 iterations sampled from inputs distributions (foreground parameters, ecoinvent background data and market prices), showed a significant advantage of VFU technology, both at a small and decentralized scale and at a large and centralized scale (95% confidence intervals not including zero values). The benefits mainly concern the production of fertilizers, the decreased efforts at the WWTP, the water savings from toilets flushing, as well as the lower infrastructure volumes if the WWTP is redesigned (in case of significant reduction of nutrients load in wastewater). The modelling approach, which could be applied to other case studies, improves the representativeness and the interpretation of results (e.g. complex relationships, global sensitivity analysis) but requires additional efforts (computing and engineering knowledge, longer calculation time). Finally, the sustainability assessment should be refined in the future with the development of the technology at larger scale to update these preliminary conclusions before its commercialization.


Subject(s)
Environment , Urine/chemistry , Waste Disposal, Fluid/economics , Waste Disposal, Fluid/methods , Costs and Cost Analysis , Electrolysis/methods , Fertilizers , Netherlands , Prospective Studies , Sewage/chemistry , Struvite/chemistry , Waste Disposal, Fluid/instrumentation , Wastewater/chemistry , Wastewater/economics
6.
Mol Ecol ; 23(15): 3900-11, 2014 08.
Article in English | MEDLINE | ID: mdl-24612360

ABSTRACT

The ecosystem service of insect pest regulation by natural enemies, such as primary parasitoids, may be enhanced by the presence of uncultivated, semi-natural habitats within agro-ecosystems, although quantifying such host-parasitoid interactions is difficult. Here, we use rRNA 16S gene sequencing to assess both the level of parasitism by Aphidiinae primary parasitoids and parasitoid identity on a large sample of aphids collected in cultivated and uncultivated agricultural habitats in Western France. We used these data to construct ecological networks to assess the level of compartmentalization between aphid and parasitoid food webs of cultivated and uncultivated habitats. We evaluated the extent to which uncultivated margins provided a resource for parasitoids shared between pest and nonpest aphids. We compared the observed quantitative ecological network described by our molecular approach to an empirical qualitative network based on aphid-parasitoid interactions from traditional rearing data found in the literature. We found that the molecular network was highly compartmentalized and that parasitoid sharing is relatively rare between aphids, especially between crop and noncrop compartments. Moreover, the few cases of putative shared generalist parasitoids were questionable and could be due to the lack of discrimination of cryptic species or from intraspecific host specialization. Our results suggest that apparent competition mediated by Aphidiinae parasitoids is probably rare in agricultural areas and that the contribution of field margins as a source of these biocontrol agents is much more limited than expected. Further large-scale (spatial and temporal) studies on other crops and noncrop habitats are needed to confirm this.


Subject(s)
Aphids/parasitology , Competitive Behavior , Ecosystem , Food Chain , Hymenoptera , Agriculture , Animals , Crops, Agricultural , France , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL