Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122237, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36535224

ABSTRACT

Absolute cross-section values are reported from high-resolution vacuum ultraviolet (VUV) photoabsorption measurements of gas-phase formic acid (HCOOH) in the photon energy range 4.7-10.8 eV (265-115 nm), together with quantum chemical calculations to provide vertical energies and oscillator strengths. The combination of experimental and theoretical methods has allowed a comprehensive assignment of the electronic transitions. The VUV spectrum reveals various vibronic features not previously reported in the literature, notably associated with (3pa'←10a'), (3p'a'←10a'), (3sa'←2a″) and (3pa'←2a″) Rydberg transitions. The assignment of vibrational features in the absorption bands reveal that the C=O stretching, v3'a', the H'-O-C' deformation, v5'a', the C-O stretching, v6'a', and the O=C-O' deformation, v7'a' modes are mainly active. The measured absolute photoabsorption cross sections have also been used to estimate the photolysis lifetime of HCOOH in the upper stratosphere (30-50 km), showing that solar photolysis is an important sink at altitudes above 30 km but not in the troposphere. Potential energy curves for the lowest-lying electronic excited states, as a function of the C=O coordinate, are obtained employing time dependent density functional theory (TD-DFT). These calculations have shown the relevance of internal conversion from Rydberg to valence character governing the nuclear dynamics, yielding clear evidence of the rather complex multidimensional nature of the potential energy surfaces involved.

2.
J Phys Chem A ; 124(42): 8660-8667, 2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33050696

ABSTRACT

Trifluoroiodomethane (CF3I) is one of the most appealing candidates for applications in plasma-based technologies in view of its many interesting advantages when compared to more standard gases such as trifluorobromomethane (CF3Br). Low-energy electrons are prone to decomposing these molecules into reactive species, and knowledge on the collision cross sections is fundamental for modeling transport and reactivity in plasma environments. Despite many studies on electron collisions with the abovementioned molecules, there are conflicting results on the assignment of shape resonances and on the magnitudes of total cross sections. Here, we try to clarify these aspects by performing ab initio electron scattering calculations. We found integral cross sections in fair agreement with the most recent measurements, in contrast to previous reports. For each molecule, we found a σCX* resonance (antibonding between the carbon and the heavy halogen) at 1 eV in CF3Br and at ∼0 eV in CF3I. Furthermore, there are three shape resonances of σCF* character; two are degenerate and account for a broad feature around 6 eV and the other one appears around 9.5 eV. We also discuss the possible role of the degenerate resonance in dissociative electron attachment reactions, as well as the impact of the heavy halogen on the cross sections and on the shape resonances.

3.
J Chem Phys ; 149(17): 174308, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30408986

ABSTRACT

We report the results of ab initio calculations for elastic scattering and also for excitation of individual electronic states of para-benzoquinone (pBQ) by the impact of low-energy electrons. The calculations for elastic scattering were performed with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) in the static-exchange (SE) plus polarization (SEP) approximation for energies up to 50 eV. The assignments for the resonance spectrum obtained in this study are, in general, in good agreement with previous results available in the literature. For electronic excitation by electron impact, the SMCPP method with N energetically open electronic states (N open ), at either the static-exchange (N open ch-SE) or the static-exchange-plus-polarisation (N open ch-SEP) approximation, was employed to calculate the scattering amplitudes using a channel coupling scheme that ranges from the 1ch-SEP up to the 89ch-SE level of approximation, depending on the energy of interest. Integral cross sections (ICSs) and differential cross sections (DCSs) were obtained for incident electron energies lying between 15 eV and 50 eV. The study focuses on the influence of multichannel coupling effects for electronically inelastic processes, more specifically, on how the number of excited states included in the open-channel space impacts upon the convergence of the cross sections at intermediate and higher energies. In particular, we found that the magnitude of DCS and ICS results for electronic excitation decreases as more channels are included in the calculations. To the best of our knowledge, there are no other experimental or theoretical ICS or DCS results for excitation into individual electronic states of pBQ available in the literature between 15 and 50 eV against which we might compare the present calculations.

4.
J Chem Phys ; 148(7): 074304, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29471649

ABSTRACT

We present a comparative study on the calculated cross sections obtained for the elastic collisions of low-energy electrons with the amino acid proline (C5H9NO2) and its building block pyrrolidine (C4H9N). We employed the Schwinger multichannel method implemented with pseudopotentials to compute integral, differential, and momentum transfer cross sections in the static-exchange plus polarization approximation, for energies up to 15 eV. We report three shape resonances for proline at around 1.7 eV, 6.8 eV, and 10 eV and two shape resonances for pyrrolidine centered at 7 eV and 10.2 eV. The present resonance energies are compared with available experimental data on vertical attachment energies and dissociative electron attachment, where a good agreement is found. From the comparison of the present results with available calculated cross sections for the simplest carboxylic acid, formic acid (HCOOH), and from electronic structure calculations, we found that the first resonance of proline, at 1.7 eV, is due the presence of the carboxylic group, whereas the other two structures, at 6.8 eV and 10 eV, clearly arise from the pyrrolidine ring. A comparison between the differential cross sections for proline and pyrrolidine at some selected energies of the incident electron is also reported in this paper.

5.
J Phys Chem A ; 120(45): 8998-9007, 2016 Nov 17.
Article in English | MEDLINE | ID: mdl-27766869

ABSTRACT

Here we report novel comprehensive investigations on the electronic state spectroscopies of isolated 2,4- and 2,6-difluorotoluene in the gas phase by high-resolution vacuum ultraviolet (VUV) photoabsorption measurements in the 4.4-10.8 eV energy range, with absolute cross-section values derived. We also present the first set of ab initio calculations (vertical energies and oscillator strengths), which we have used in the assignment of valence transitions of the difluorotoluene molecules, together with calculated ionization energies to obtain the Rydberg transitions for both molecules. The measured absolute photoabsorption cross sections have been used to estimate the photolysis lifetimes of 2,4- and 2,6-difluorotoluene in the Earth's atmosphere.

6.
J Chem Phys ; 144(16): 164302, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27131545

ABSTRACT

We report differential and integral elastic cross sections for low-energy electron collisions with CF3Cl, CF2Cl2, and CFCl3 molecules for energies ranging from 0.1 eV to 30 eV. The calculations were performed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations. The influence of the permanent electric dipole moment on the cross sections was included using the Born closure scheme. A very good agreement between our calculations and the experimental results of Jones [J. Chem. Phys. 84, 813 (1986)], Mann and Linder [J. Phys. B 25, 1621 (1992); 25, 1633 (1992)] and Hoshino et al. [J. Chem. Phys. 138, 214305 (2013)] was found. We also compare our results with the calculations of Beyer et al. [Chem. Phys. 255, 1 (2000)] using the R-matrix method, where we find good agreement with respect to the location of the resonances, and with the calculations of Hoshino et al. using the independent atom method with screening corrected additivity rule, where we find qualitative agreement at energies above 20 eV. Additional electronic structure calculations were carried out in order to help in the interpretation of the scattering results. The stabilization the lowest σ(∗) resonance due to the exchange of fluorine by chlorine atoms (halogenation effect) follows a simple linear relation with the energy of the lowest unoccupied molecular orbitals and can be considered as a signature of the halogenation effect.

7.
J Chem Phys ; 140(2): 024317, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24437887

ABSTRACT

We report on the shape resonance spectra of uracil, 5-fluorouracil, and 5-chlorouracil, as obtained from fixed-nuclei elastic scattering calculations performed with the Schwinger multichannel method with pseudopotentials. Our results are in good agreement with the available electron transmission spectroscopy data, and support the existence of three π∗ resonances in uracil and 5-fluorouracil. As expected, the anion states are more stable in the substituted molecules than in uracil. Since the stabilization is stronger in 5-chlorouracil, the lowest π∗ resonance in this system becomes a bound anion state. The present results also support the existence of a low-lying σCCl (*) shape resonance in 5-chlorouracil. Exploratory calculations performed at selected C-Cl bond lengths suggest that the σCCl (*) resonance could couple to the two lowest π∗ states, giving rise to a very rich dissociation dynamics. These facts would be compatible with the complex branching of the dissociative electron attachment cross sections, even though we cannot discuss any details of the vibration dynamics based only on the present fixed-nuclei results.


Subject(s)
Fluorouracil/chemistry , Uracil/analogs & derivatives , Uracil/chemistry , Electrons , Models, Molecular
8.
J Chem Phys ; 138(23): 234311, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23802964

ABSTRACT

We report elastic integral and differential cross sections for electron scattering from the aza-derivatives of pyrrole, furan, and thiophene, namely, pyrazole, imidazole, isoxazole, oxazole, isothiazole, and thiazole. The calculations were performed within the Schwinger multichannel method with pseudopotentials, with inclusion of static, exchange, and polarization interactions, for energies up to 10 eV. We found two π* shape resonances and a high-lying σ* shape resonance in each system. A sharp low-energy σ* resonance was also identified in isothiazole and thiazole. Pyrazole and imidazole presented yet a broad low-lying σ* resonance. The positions of the resonances agree very well with existing experimental results. We discuss the similarities and differences among the resonances of these compounds.


Subject(s)
Electrons , Furans/chemistry , Pyrroles/chemistry , Thiophenes/chemistry , Vibration
9.
J Chem Phys ; 138(19): 194306, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23697417

ABSTRACT

We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π∗ anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ∗ shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π∗ resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004)]. The existence of the σ∗ shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998)] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π∗ molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.


Subject(s)
Electrons , Quantum Theory , Thiophenes/chemistry
10.
J Chem Phys ; 138(17): 174307, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23656134

ABSTRACT

We report momentum transfer cross sections for elastic collisions of low-energy electrons with the HCOOH···(H2O)n complexes, with n = 1, 2, in liquid phase. The scattering cross sections were computed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations, for energies ranging from 0.5 eV to 6 eV. We considered ten different structures of HCOOH···H2O and six structures of HCOOH···(H2O)2 which were generated using classical Monte Carlo simulations of formic acid in aqueous solution at normal conditions of temperature and pressure. The aim of this work is to investigate the influence of microsolvation on the π* shape resonance of formic acid. Previous theoretical and experimental studies reported a π* shape resonance for HCOOH at around 1.9 eV. This resonance can be either more stable or less stable in comparison to the isolated molecule depending on the complex structure and the water role played in the hydrogen bond interaction. This behavior is explained in terms of (i) the polarization of the formic acid molecule due to the water molecules and (ii) the net charge of the solute. The proton donor or acceptor character of the water molecules in the hydrogen bond is important for understanding the stabilization versus destabilization of the π* resonances in the complexes. Our results indicate that the surrounding water molecules may affect the lifetime of the π* resonance and hence the processes driven by this anion state, such as the dissociative electron attachment.


Subject(s)
Electrons , Formates/chemistry , Water/chemistry , Models, Molecular , Monte Carlo Method
11.
J Chem Phys ; 126(19): 194317, 2007 May 21.
Article in English | MEDLINE | ID: mdl-17523814

ABSTRACT

The authors report integral, differential and momentum transfer cross sections for elastic scattering of low-energy electrons by C(4)H(4)O (furan) molecules. Their calculations employed the Schwinger multichannel method with pseudopotentials and were performed in the static-exchange and in the static-exchange plus polarization approximations. The authors found two shape resonances located around 2.1 and 4.2 eV that belong to the B(1) and A(2) symmetries of the C(2v) group, respectively. The authors' results are consistent with recent measurements of vertical electron attachment energies.

SELECTION OF CITATIONS
SEARCH DETAIL