Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Epilepsia ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008349

ABSTRACT

For >30 years, the Eilat Conference on New Antiepileptic Drugs and Devices has provided a forum for the discussion of advances in the development of new therapies for seizures and epilepsy. The EILAT XVII conference took place in Madrid, Spain, on May 5-8, 2024. Participants included basic scientists and clinical investigators from industry and academia, other health care professionals, and representatives from lay organizations. We summarize in this article information on treatments in preclinical and in early clinical development discussed at the conference. These include AMT-260, a gene therapy designed to downregulate the expression of Glu2K subunits of kainate receptors, in development for the treatment of drug-resistant seizures associated with mesial temporal sclerosis; BHV-7000, a selective activator of heteromeric Kv7.2/7.3 potassium channels, in development for the treatment of focal epilepsy; ETX101, a recombinant adeno-associated virus serotype 9 designed to increase NaV1.1 channel density in inhibitory γ-aminobutyric acidergic (GABAergic) neurons, in development for the treatment of SCN1A-positive Dravet syndrome; GAO-3-02, a compound structurally related to synaptamide, which exerts antiseizure activity at least in part through an action on cannabinoid type 2 receptors; LRP-661, a structural analogue of cannabidiol, in development for the treatment of seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex; OV329, a selective inactivator of GABA aminotransferase, in development for the treatment of drug-resistant seizures; PRAX-628, a functionally selective potent sodium channel modulator with preference for the hyperexcitable state of sodium channels, in development for the treatment of focal seizures; RAP-219, a selective negative allosteric modulator of transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor regulatory protein γ-8, in development for the treatment of focal seizures; and rozanolixizumab, a humanized anti-neonatal Fc receptor monoclonal antibody, in development for the treatment of LGI1 autoimmune encephalitis. Treatments in more advanced development are summarized in Part II of this report.

2.
CNS Drugs ; 38(5): 399-408, 2024 May.
Article in English | MEDLINE | ID: mdl-38520503

ABSTRACT

BACKGROUND AND OBJECTIVE: Post-stroke epilepsy represents an important clinical challenge as it often requires both treatment with direct oral anticoagulants (DOACs) and antiseizure medications (ASMs). Levetiracetam (LEV), an ASM not known to induce metabolizing enzymes, has been suggested as a safer alternative to enzyme-inducing (EI)-ASMs in patients treated with DOACs; however, current clinical guidelines suggest caution when LEV is used with DOACs because of possible P-glycoprotein induction and competition (based on preclinical studies). We investigated whether LEV affects apixaban and rivaroxaban concentrations compared with two control groups: (a) patients treated with EI-ASMs and (b) patients not treated with any ASM. METHODS: In this retrospective observational study, we monitored apixaban and rivaroxaban peak plasma concentrations (Cmax) in 203 patients treated with LEV (n = 28) and with EI-ASM (n = 33), and in patients not treated with any ASM (n = 142). Enzyme-inducing ASMs included carbamazepine, phenytoin, phenobarbital, primidone, and oxcarbazepine. We collected clinical and laboratory data for analysis, and DOAC Cmax of patients taking LEV were compared with the other two groups. RESULTS: In 203 patients, 55% were female and the mean age was 78 ± 0.8 years. One hundred and eighty-six patients received apixaban and 17 patients received rivaroxaban. The proportion of patients with DOAC Cmax below their therapeutic range was 7.1% in the LEV group, 10.6% in the non-ASM group, and 36.4% in the EI-ASM group (p < 0.001). The odds of having DOAC Cmax below the therapeutic range (compared with control groups) was not significantly different in patients taking LEV (adjusted odds ratio 0.70, 95% confidence interval 0.19-2.67, p = 0.61), but it was 12.7-fold higher in patients taking EI-ASM (p < 0.001). In an analysis in patients treated with apixaban, there was no difference in apixaban Cmax between patients treated with LEV and non-ASM controls, and LEV clinical use was not associated with variability in apixaban Cmax in a multivariate linear regression. CONCLUSIONS: In this study, we show that unlike EI-ASMs, LEV clinical use was not significantly associated with lower apixaban Cmax and was similar to that in patients not treated with any ASM. Our findings suggest that the combination of LEV with apixaban and rivaroxaban may not be associated with decreased apixaban and rivaroxaban Cmax. Therefore, prospective controlled studies are required to examine the possible non-pharmacokinetic mechanism of the effect of the LEV-apixaban or LEV-rivaroxaban combination on patients' outcomes.


Subject(s)
Atrial Fibrillation , Pyrazoles , Rivaroxaban , Aged , Female , Humans , Male , Anticoagulants/therapeutic use , Atrial Fibrillation/drug therapy , Dabigatran , Levetiracetam/therapeutic use , Prospective Studies , Pyridones/adverse effects , Retrospective Studies , Rivaroxaban/adverse effects
3.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473769

ABSTRACT

The aim of this study was to investigate the comparative antiseizure activity of the l-enantiomers of d,l-fenfluramine and d,l-norfenfluramine and to evaluate the relationship between their concentration in plasma and brain and anticonvulsant activity. d,l-Fenfluramine, d,l-norfenfluramine and their individual enantiomers were evaluated in the mouse maximal electroshock seizure (MES) test. d,l-Fenfluramine, d,l-norfenfluramine and their individual l-enantiomers were also assessed in the DBA/2 mouse audiogenic seizure model. All compounds were administered intraperitoneally. Brain and plasma concentrations of the test compounds in DBA/2 mice were quantified and correlated with anticonvulsant activity. In the MES test, fenfluramine, norfenfluramine and their enantiomers showed comparable anticonvulsant activity, with ED50 values between 5.1 and 14.8 mg/kg. In the audiogenic seizure model, l-norfenfluramine was 9 times more potent than d,l-fenfluramine and 15 times more potent than l-fenfluramine based on ED50 (1.2 vs. 10.2 and 17.7 mg/kg, respectively). Brain concentrations of all compounds were about 20-fold higher than in plasma. Based on brain EC50 values, l-norfenfluramine was 7 times more potent than d,l-fenfluramine and 13 times more potent than l-fenfluramine (1940 vs. 13,200 and 25,400 ng/g, respectively). EC50 values for metabolically formed d,l-norfenfluramine and l-norfenfluramine were similar to brain EC50 values of the same compounds administered as such, suggesting that, in the audiogenic seizure model, the metabolites were responsible for the antiseizure activity of the parent compounds. Because of the evidence linking d-norfenfluramine to d,l-fenfluramine to cardiovascular and metabolic adverse effects, their l-enantiomers could potentially be safer follow-up compounds to d,l-fenfluramine. We found that, in the models tested, the activity of l-fenfluramine and l-norfenfluramine was comparable to that of the corresponding racemates. Based on the results in DBA/2 mice and other considerations, l-norfenfluramine appears to be a particularly attractive candidate for further evaluation as a novel, enantiomerically pure antiseizure medication.


Subject(s)
Epilepsy, Reflex , Fenfluramine , Mice , Animals , Norfenfluramine/metabolism , Anticonvulsants , Follow-Up Studies , Mice, Inbred DBA , Seizures
4.
Epilepsia ; 65(2): e14-e19, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38041575

ABSTRACT

The effect of fenfluramine and norfenfluramine enantiomers in rodent seizure models and their correlation with the pharmacokinetics of d- and l-fenfluramine in rats have been reported recently. To complement these findings, we investigated the pharmacokinetics of d- and l- norfenfluramine in rat plasma and brain. Sprague-Dawley rats were injected intraperitoneally with 20 mg/kg and 1 mg/kg l- norfenfluramine. A 1 mg/kg dose of d-norfenfluramine was used because higher doses caused severe toxicity. The concentration of each enantiomer in plasma and brain was determined at different time points by liquid chromatography/mass spectrometry. Pharmacokinetic parameters were compared between norfenfluramine enantiomers, and with those reported previously for fenfluramine enantiomers after a 20 mg/kg, i.p., dose. All enantiomers were absorbed rapidly and eliminated, with half-lives ranging from 0.9 h (l-fenfluramine) to 6.1 h (l- norfenfluramine, 20 mg/kg) in plasma, and from 3.6 h (d-fenfluramine) to 8.0 h (l-fenfluramine) in brain. Brain-to-plasma concentration ratios ranged from 15.4 (d-fenfluramine) to 27.6 (d-norfenfluramine), indicating extensive brain penetration. The fraction of d- and l-fenfluramine metabolized to norfenfluramine was estimated to be close to unity. This work is part of ongoing investigations to determine the potential value of developing enantiomerically pure l-fenfluramine or l-norfenfluramine as follow-up compounds to the marketed racemic fenfluramine.


Subject(s)
Fenfluramine , Norfenfluramine , Rats , Animals , Norfenfluramine/pharmacokinetics , Rats, Sprague-Dawley , Brain , Stereoisomerism
5.
CNS Drugs ; 37(9): 781-795, 2023 09.
Article in English | MEDLINE | ID: mdl-37603261

ABSTRACT

The inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays an important role in the modulation of neuronal excitability, and a disruption of GABAergic transmission contributes to the pathogenesis of some seizure disorders. Although many currently available antiseizure medications do act at least in part by potentiating GABAergic transmission, there is an opportunity for further research aimed at developing more innovative GABA-targeting therapies. The present article summarises available evidence on a number of such treatments in clinical development. These can be broadly divided into three groups. The first group consists of positive allosteric modulators of GABAA receptors and includes Staccato® alprazolam (an already marketed benzodiazepine being repurposed in epilepsy as a potential rescue inhalation treatment for prolonged and repetitive seizures), the α2/3/5 subtype-selective agents darigabat and ENX-101, and the orally active neurosteroids ETX155 and LPCN 2101. A second group comprises two drugs already marketed for non-neurological indications, which could be repurposed as treatments for seizure disorders. These include bumetanide, a diuretic agent that has undergone clinical trials in phenobarbital-resistant neonatal seizures and for which the rationale for further development in this indication is under debate, and ivermectin, an antiparasitic drug currently investigated in a randomised double-blind trial in focal epilepsy. The last group comprises a series of highly innovative therapies, namely GABAergic interneurons (NRTX-001) delivered via stereotactic cerebral implantation as a treatment for mesial temporal lobe epilepsy, an antisense oligonucleotide (STK-001) aimed at upregulating NaV1.1 currents and restoring the function of GABAergic interneurons, currently tested in a trial in patients with Dravet syndrome, and an adenoviral vector-based gene therapy (ETX-101) scheduled for investigation in Dravet syndrome. Another agent, a subcutaneously administered neuroactive peptide (NRP2945) that reportedly upregulates the expression of GABAA receptor α and ß subunits is being investigated, with Lennox-Gastaut syndrome and other epilepsies as proposed indications. The diversity of the current pipeline underscores a strong interest in the GABA system as a target for new treatment development in epilepsy. To date, limited clinical data are available for these investigational treatments and further studies are required to assess their potential value in addressing unmet needs in epilepsy management.


Subject(s)
Epilepsies, Myoclonic , Epilepsies, Partial , Epilepsy , Lennox Gastaut Syndrome , Infant, Newborn , Humans , Epilepsy/drug therapy , gamma-Aminobutyric Acid/therapeutic use , Randomized Controlled Trials as Topic
6.
CNS Drugs ; 37(9): 755-779, 2023 09.
Article in English | MEDLINE | ID: mdl-37603262

ABSTRACT

γ-Aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter in the mammalian brain and has been found to play an important role in the pathogenesis or the expression of many neurological diseases, including epilepsy. Although GABA can act on different receptor subtypes, the component of the GABA system that is most critical to modulation of seizure activity is the GABAA-receptor-chloride (Cl-) channel complex, which controls the movement of Cl- ions across the neuronal membrane. In the mature brain, binding of GABA to GABAA receptors evokes a hyperpolarising (anticonvulsant) response, which is mediated by influx of Cl- into the cell driven by its concentration gradient between extracellular and intracellular fluid. However, in the immature brain and under certain pathological conditions, GABA can exert a paradoxical depolarising (proconvulsant) effect as a result of an efflux of chloride from high intracellular to lower extracellular Cl- levels. Extensive preclinical and clinical evidence indicates that alterations in GABAergic inhibition caused by drugs, toxins, gene defects or other disease states (including seizures themselves) play a causative or contributing role in facilitating or maintaning seizure activity. Conversely, enhancement of GABAergic transmission through pharmacological modulation of the GABA system is a major mechanism by which different antiseizure medications exert their therapeutic effect. In this article, we review the pharmacology and function of the GABA system and its perturbation in seizure disorders, and highlight how improved understanding of this system offers opportunities to develop more efficacious and better tolerated antiseizure medications. We also review the available data for the two most recently approved antiseizure medications that act, at least in part, through GABAergic mechanisms, namely cenobamate and ganaxolone. Differences in the mode of drug discovery, pharmacological profile, pharmacokinetic properties, drug-drug interaction potential, and clinical efficacy and tolerability of these agents are discussed.


Subject(s)
Chlorides , Epilepsy , Animals , Humans , Epilepsy/drug therapy , Brain , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Seizures/drug therapy , Mammals
7.
Epilepsia ; 64(6): 1673-1683, 2023 06.
Article in English | MEDLINE | ID: mdl-36995363

ABSTRACT

OBJECTIVES: To investigate the comparative antiseizure activity of the individual enantiomers of fenfluramine and its major active primary metabolite norfenfluramine in rodent seizure models, and its relationship with the pharmacokinetics of these compounds in plasma and brain. METHODS: The antiseizure potency of d,l-fenfluramine (racemic fenfluramine) was compared with the respective potencies of its individual enantiomers and the individual enantiomers of norfenfluramine using the maximal electroshock (MES) test in rats and mice, and the 6-Hz 44 mA test in mice. Minimal motor impairment was assessed simultaneously. The time course of seizure protection in rats was compared with the concentration profiles of d-fenfluramine, l-fenfluramine, and their primary active metabolites in plasma and brain. RESULTS: All compounds tested were active against MES-induced seizures in rats and mice after acute (single-dose) administration, but no activity against 6-Hz seizures was found even at doses up to 30 mg/kg. Estimates of median effective doses (ED50 ) in the rat-MES test were obtained for all compounds except for d-norfenfluramine, which caused dose-limiting neurotoxicity. Racemic fenfluramine had approximately the same antiseizure potency as its individual enantiomers. Both d- and l-fenfluramine were absorbed and distributed rapidly to the brain, suggesting that seizure protection at early time points (≤2 h) was related mainly to the parent compound. Concentrations of all enantiomers in brain tissue were >15-fold higher than those in plasma. SIGNIFICANCE: Although there are differences in antiseizure activity and pharmacokinetics among the enantiomers of fenfluramine and norfenfluramine, all compounds tested are effective in protecting against MES-induced seizures in rodents. In light of the evidence linking the d-enantiomers to cardiovascular and metabolic adverse effects, these data suggest that l-fenfluramine and l-norfenfluramine are potentially attractive candidates for a chiral switch approach leading to development of a novel, enantiomerically-pure antiseizure medication.


Subject(s)
Fenfluramine , Norfenfluramine , Rats , Mice , Animals , Fenfluramine/therapeutic use , Norfenfluramine/metabolism , Norfenfluramine/pharmacology , Rodentia/metabolism , Brain/metabolism , Seizures/drug therapy , Seizures/metabolism
8.
CNS Drugs ; 37(3): 203-214, 2023 03.
Article in English | MEDLINE | ID: mdl-36869199

ABSTRACT

The use of direct oral anticoagulants (DOACs) is increasing because of their superior efficacy and safety compared with vitamin K antagonists. Pharmacokinetic drug interactions, particularly those involving cytochrome P450- mediated metabolism and P-glycoprotein transport, significantly affect the efficacy and safety of DOACs. In this article, we assess the effects of cytochrome P450- and P-glycoprotein-inducing antiseizure medications on DOAC pharmacokinetics in comparison to rifampicin. Rifampicin decreases to a varying extent the plasma exposure (area under the concentration-time curve) and peak concentration of each DOAC, consistent with its specific absorption and elimination pathways. For apixaban and rivaroxaban, rifampicin had a greater effect on the area under the concentration-time curve than on peak concentration. Therefore, using peak concentration to monitor DOAC concentrations may underestimate the effect of rifampicin on DOAC exposure. Antiseizure medications that are cytochrome P450 and P-glycoprotein inducers are commonly used with DOACs. Several studies have observed a correlation between the concomitant use of DOACs and enzyme-inducing antiseizure medications and DOAC treatment failure, for example, ischemic and thrombotic events. The European Society of Cardiology recommends avoiding this combination, as well as the combination of DOACs with levetiracetam and valproic acid, owing to a risk of low DOAC concentrations. However, levetiracetam and valproic acid are not cytochrome P450 or P-glycoprotein inducers, and the implications of their use with DOACs remain to be elucidated. Our comparative analysis suggests DOAC plasma concentration monitoring as a possible strategy to guide dosing owing to the predictable correlation between DOACs' plasma concentration and effect. Patients taking concomitant enzyme-inducing antiseizure medications are at risk for low DOAC concentrations and subsequently, treatment failure and thus can benefit from DOAC concentration monitoring to prophylactically identify this risk.


Subject(s)
Rifampin , Valproic Acid , Humans , Levetiracetam , Rifampin/adverse effects , Administration, Oral , Anticoagulants/adverse effects , ATP Binding Cassette Transporter, Subfamily B
9.
Epilepsia ; 63(11): 2883-2910, 2022 11.
Article in English | MEDLINE | ID: mdl-35950617

ABSTRACT

The Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI) was held in Madrid, Spain on May 22-25, 2022 and was attended by 157 delegates from 26 countries representing basic and clinical science, regulatory agencies, and pharmaceutical industries. One day of the conference was dedicated to sessions presenting and discussing investigational compounds under development for the treatment of seizures and epilepsy. The current progress report summarizes recent findings and current knowledge for seven of these compounds in more advanced clinical development for which either novel preclinical or patient data are available. These compounds include bumetanide and its derivatives, darigabat, ganaxolone, lorcaserin, soticlestat, STK-001, and XEN1101. Of these, ganaxolone was approved by the US Food and Drug Administration in March 2022 for the treatment of seizures associated with cyclin-dependent kinase-like 5 deficiency disorder in patients 2 years of age and older.


Subject(s)
Anticonvulsants , Research Report , Humans , Anticonvulsants/therapeutic use , Pharmaceutical Preparations , Drugs, Investigational/therapeutic use , Seizures/drug therapy
10.
Epilepsia ; 63(11): 2865-2882, 2022 11.
Article in English | MEDLINE | ID: mdl-35946083

ABSTRACT

The Eilat Conferences have provided a forum for discussion of novel treatments of epilepsy among basic and clinical scientists, clinicians, and representatives from regulatory agencies as well as from the pharmaceutical industry for 3 decades. Initially with a focus on pharmacological treatments, the Eilat Conferences now also include sessions dedicated to devices for treatment and monitoring. The Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI) was held in Madrid, Spain, on May 22-25, 2022 and was attended by 157 delegates from 26 countries. As in previous Eilat Conferences, the core of EILAT XVI consisted of a sequence of sessions where compounds under development were presented and discussed. This progress report summarizes preclinical and, when available, phase 1 clinical data on five different investigational compounds in preclinical or early clinical development, namely GAO-3-02, GRT-X, NBI-921352 (formerly XEN901), OV329, and XEN496 (a pediatric granular formulation of retigabine/ezogabine). Overall, the data presented in this report illustrate novel strategies for developing antiseizure medications, including an interest in novel molecular targets, and a trend to pursue potential new treatments for rare and previously neglected severe epilepsy syndromes.


Subject(s)
Anticonvulsants , Epilepsy , Humans , Child , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Research Report , Drugs, Investigational/therapeutic use , Drugs, Investigational/pharmacology , Epilepsy/drug therapy
11.
Clin Pharmacokinet ; 61(9): 1219-1236, 2022 09.
Article in English | MEDLINE | ID: mdl-35895276

ABSTRACT

Ritonavir-boosted nirmatrelvir (RBN) has been authorized recently in several countries as an orally active anti-SARS-CoV-2 treatment for patients at high risk of progressing to severe COVID-19 disease. Nirmatrelvir is the active component against the SARS-CoV-2 virus, whereas ritonavir, a potent CYP3A inhibitor, is intended to boost the activity of nirmatrelvir by increasing its concentration in plasma to ensure persistence of antiviral concentrations during the 12-hour dosing interval. RBN is involved in many clinically important drug-drug interactions both as perpetrator and as victim, which can complicate its use in patients treated with antiseizure medications (ASMs). Interactions between RBN and ASMs are bidirectional. As perpetrator, RBN may increase the plasma concentration of a number of ASMs that are CYP3A4 substrates, possibly leading to toxicity. As victims, both nirmatrelvir and ritonavir are subject to metabolic induction by concomitant treatment with potent enzyme-inducing ASMs (carbamazepine, phenytoin, phenobarbital and primidone). According to US and European prescribing information, treatment with these ASMs is a contraindication to the use of RBN. Although remdesivir is a valuable alternative to RBN, it may not be readily accessible in some settings due to cost and/or need for intravenous administration. If remdesivir is not an appropriate option, either bebtelovimab or molnupiravir may be considered. However, evidence about the clinical efficacy of bebtelovimab is still limited, and molnupiravir, the only orally active alternative, is deemed to have appreciably lower efficacy than RBN and remdesivir.


Subject(s)
COVID-19 Drug Treatment , Epilepsy , Antibodies, Neutralizing , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Epilepsy/drug therapy , Humans , Ritonavir/therapeutic use , SARS-CoV-2
12.
Clin Pharmacokinet ; 61(8): 1187-1198, 2022 08.
Article in English | MEDLINE | ID: mdl-35699912

ABSTRACT

BACKGROUND: CYP2C9 is a member of the cytochrome P450 (CYP) superfamily responsible for the metabolism of 16% of drugs that undergo oxidative metabolism. The activity of CYP2C9 exhibits marked inter-individual variability, which translates into prominent differences in the pharmacokinetics of CYP2C9 substrates, some of which are characterized by a narrow therapeutic window. Genetic polymorphisms in the gene encoding for CYP2C9 account for a fraction of the variability in CYP2C9 activity. The phenytoin metabolic ratio (PMR) is a marker of CYP2C9 activity in vivo, which correlates with CYP2C9 genetic polymorphisms. OBJECTIVE: The purpose of the current study was to evaluate the ability of the PMR to predict the oral clearance of (S)-warfarin (SWOCL) and its formation clearance towards its CYP2C9-mediated metabolites (SWCLf) [i.e., 6- and 7-hydroxy-(S)-warfarin]. METHODS: The study was conducted in 150 healthy non-smoker subjects (segment 1) and 60 patients treated with warfarin (segment 2). In the first segment, the participants received on two separate occasions a single 300-mg dose of phenytoin and at least 7 days later a single dose of warfarin (5 or 10 mg). The same PMR procedure was performed in the second segment, except that it was performed either before warfarin initiation or after the patients had reached stable anticoagulation. The PMR was derived from the ratio of 5-(4-hydroxyphenyl)-5-phenyl-hydantoin content in a 24-hour urine collection to plasma phenytoin concentration 12- (PMR24/12) or 24- (PMR24/24) post-dosing. In segment 1, SWOCL was calculated from the ratio of (S)-warfarin dose to the warfarin area under the plasma concentration-time curve extrapolated to infinity and the SWCLf from the ratio of urine content of 6- and 7-hydroxy-(S)-warfarin to (S)-warfarin area under the (S)-warfarin plasma concentration-time curve until the last measured timepoint. In segment 2, estimated SWOCL was derived from the ratio of (S)-warfarin dose to the mid-interval plasma concentration of (S)-warfarin. RESULTS: The PMR, SWOCL, and SWCLf varied significantly between carriers of different CYP2C9 genotypes in both healthy subjects (p < 0.001) and patients (p < 0.005). However, PMR and SWOCL values exhibited substantial intra-genotypic variability. PMR24/12 and PMR24/24 were significantly correlated with SWOCL both in healthy subjects (r = 0.62 and r = 0.67, respectively, p < 0.001) and in patients (r = 0.57 and r = 0.61, respectively, p < 0.001). In a multiple regression model that included all variables that correlated with SWOCL, PMR was the strongest predictor, explaining 44% and 38% of the variability in SWOCL among healthy subjects and patients, respectively, and accounting for 95.7% (44%/46%) and 90.5% (38%/42%) of the total explained variability in SWOCL among healthy subjects and patients, respectively. CONCLUSIONS: The PMR is the strongest predictor of SWOCL, and as such, it exhibits a significant advantage over the CYP2C9 genotype. The inclusion of PMR in future dosing algorithms of CYP2C9 substrates characterized by a narrow therapeutic window should be encouraged and further investigated.


Subject(s)
Cytochrome P-450 CYP2C9 , Warfarin , Anticoagulants/pharmacokinetics , Biomarkers , Cytochrome P-450 CYP2C9/genetics , Genotype , Humans , Phenytoin , Warfarin/pharmacokinetics
13.
CNS Drugs ; 36(2): 113-122, 2022 02.
Article in English | MEDLINE | ID: mdl-35094259

ABSTRACT

Lorcaserin, a selective serotonin 5-HT2C receptor agonist, was developed as an appetite suppressant with the rationale of minimizing the risk of cardiovascular toxicity associated with non-selective serotoninergic agents such as fenfluramine. Eight years after FDA approval, however, it was withdrawn from the market, when a large safety study suggested a potential cancer risk. Following in the fenfluramine footsteps and utilizing the repurposing approach coupled with the regulatory orphan drug designation, lorcaserin is currently in clinical development for the treatment of epilepsy. This potential novel indication builds on the evidence that 5-HT2C receptor stimulation can protect against seizures, and accounts at least in part for fenfluramine's antiseizure effects in Dravet syndrome models. In animal models, lorcaserin shows a narrower range of antiseizure activity than fenfluramine. In particular, lorcaserin is inactive in classical acute seizure tests such as maximal electroshock and subcutaneous pentylenetetrazole in mice and rats, and the 6-Hz stimulation model in mice. However, it is active in the GAERS absence seizure model, and in mutant zebrafish models of Dravet syndrome. Preliminary uncontrolled studies in patients with Dravet syndrome have yielded promising results, and a phase III, double-blind, placebo-controlled, parallel group trial is currently ongoing to assess its efficacy and safety in children and adults with Dravet syndrome.


Subject(s)
Benzazepines , Drug Development/methods , Epilepsies, Myoclonic/drug therapy , Animals , Anticonvulsants/pharmacokinetics , Anticonvulsants/therapeutic use , Benzazepines/pharmacokinetics , Benzazepines/therapeutic use , Disease Models, Animal , Humans , Risk Assessment , Serotonin 5-HT2 Receptor Agonists/pharmacokinetics , Serotonin 5-HT2 Receptor Agonists/therapeutic use
14.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806023

ABSTRACT

We recently reported a new class of carbamate derivatives as anticonvulsants. Among these, 3-methylpentyl(4-sulfamoylphenyl)carbamate (MSPC) stood out as the most potent compound with ED50 values of 13 mg/kg (i.p.) and 28 mg/kg (p.o.) in the rat maximal electroshock test (MES). 3-Methylpropyl(4-sulfamoylphenyl)carbamate (MBPC), reported and characterized here, is an MSPC analogous compound with two less aliphatic carbon atoms in its structure. As both MSPC and MBPC are chiral compounds, here, we studied the carbonic anhydrase inhibitory and anticonvulsant action of both MBPC enantiomers in comparison to those of MSPC as well as their pharmacokinetic properties. Racemic-MBPC and its enantiomers showed anticonvulsant activity in the rat maximal electroshock (MES) test with ED50 values in the range of 19-39 mg/kg. (R)-MBPC had a 65% higher clearance than its enantiomer and, consequently, a lower plasma exposure (AUC) than (S)-MSBC and racemic-MSBC. Nevertheless, (S)-MBPC had a slightly better brain permeability than (R)-MBPC with a brain-to-plasma (AUC) ratio of 1.32 (S-enantiomer), 1.49 (racemate), and 1.27 (R-enantiomer). This may contribute to its better anticonvulsant-ED50 value. The clearance of MBPC enantiomers was more enantioselective than the brain permeability and MES-ED50 values, suggesting that their anticonvulsant activity might be due to multiple mechanisms of action.


Subject(s)
Carbamates/chemistry , Central Nervous System/drug effects , Animals , Anticonvulsants/pharmacology , Area Under Curve , Brain/drug effects , Carbamates/pharmacokinetics , Carbonic Anhydrases/chemistry , Electroshock , Male , Protein Isoforms , Rats , Rats, Sprague-Dawley , Seizures/drug therapy , Solvents , Stereoisomerism
15.
Pharmacol Ther ; 226: 107866, 2021 10.
Article in English | MEDLINE | ID: mdl-33895186

ABSTRACT

In 2020, racemic-fenfluramine was approved in the U.S. and Europe for the treatment of seizures associated with Dravet syndrome, through a restricted/controlled access program aimed at minimizing safety risks. Fenfluramine had been used extensively in the past as an appetite suppressant, but it was withdrawn from the market in 1997 when it was found to cause cardiac valvulopathy. Available evidence indicates that appetite suppression and cardiac valvulopathy are mediated by different serotonergic mechanisms. In particular, appetite suppression can be ascribed mainly to the enantiomers d-fenfluramine and d-norfenfluramine, the primary metabolite of d-fenfluramine, whereas cardiac valvulopathy can be ascribed mainly to d-norfenfluramine. Because of early observations of markedly improved seizure control in some forms of epilepsy, fenfluramine remained available in Belgium through a Royal Decree after 1997 for use in a clinical trial in patients with Dravet syndrome at average dosages lower than those generally prescribed for appetite suppression. More recently, double-blind placebo-controlled trials established its efficacy in the treatment of convulsive seizures associated with Dravet syndrome and of drop seizures associated with Lennox-Gastaut syndrome, at doses up to 0.7 mg/kg/day (maximum 26 mg/day). Although no cardiovascular toxicity has been associated with the use of fenfluramine in epilepsy, the number of patients exposed to date has been limited and only few patients had duration of exposure longer than 3 years. This article analyzes available evidence on the mechanisms involved in fenfluramine-induced appetite suppression, antiseizure effects and cardiovascular toxicity. Despite evidence that stimulation of 5-HT2B receptors (the main mechanism leading to cardiac valvulopathy) is not required for antiseizure activity, there are many critical gaps in understanding fenfluramine's properties which are relevant to its use in epilepsy. Particular emphasis is placed on the remarkable lack of publicly accessible information about the comparative activity of the individual enantiomers of fenfluramine and norfenfluramine in experimental models of seizures and epilepsy, and on receptors systems considered to be involved in antiseizure effects. Preliminary data suggest that l-fenfluramine retains prominent antiseizure effects in a genetic zebrafish model of Dravet syndrome. If these findings are confirmed and extended to other seizure/epilepsy models, there would be an incentive for a chiral switch from racemic-fenfluramine to l-fenfluramine, which could minimize the risk of cardiovascular toxicity and reduce the incidence of adverse effects such as loss of appetite and weight loss.


Subject(s)
Drug Repositioning , Fenfluramine , Animals , Epilepsy/drug therapy , Fenfluramine/therapeutic use , Humans , Randomized Controlled Trials as Topic , Weight Loss/drug effects
16.
Epilepsia ; 62(2): 285-302, 2021 02.
Article in English | MEDLINE | ID: mdl-33426641

ABSTRACT

The safety of switching between generic products of antiseizure medications (ASMs) continues to be a hot topic in epilepsy management. The main reason for concern relates to the uncertainty on whether, and when, two generics found to be bioequivalent to the same brand (reference) product are bioequivalent to each other, and the risk of a switch between generics resulting in clinically significant changes in plasma ASM concentrations. This article addresses these concerns by discussing the distinction between bioequivalence and statistical testing for significant difference, the importance of intra-subject variability in interpreting bioequivalence studies, the stricter regulatory bioequivalence requirements applicable to narrow-therapeutic-index (NTI) drugs, and the extent by which currently available generic products of ASMs comply with such criteria. Data for 117 oral generic products of second-generation ASMs approved in Europe by the centralized, mutual recognition or decentralized procedure were analyzed based on a review of publicly accessible regulatory assessment reports. The analysis showed that for 99% of generic products assessed (after exclusion of gabapentin products), the 90% confidence intervals (90% CIs) of geometric mean ratios (test/reference) for AUC (area under the drug concentration vs time curve) were narrow and wholly contained within the acceptance interval (90%-111%) applied to NTI drugs. Intra-subject variability for AUC was <10% for 53 (88%) of the 60 products for which this measure was reported. Many gabapentin generics showed broader, 90% CIs for bioequivalence estimates, and greater intra-subject variability, compared with generics of other ASMs. When interpreted within the context of other available data, these results suggest that any risk of non-bioequivalence between these individual generic products is small, and that switches across these products are not likely to result in clinically relevant changes in plasma drug exposure. The potential for variability in exposure when switching across generics is likely to be greatest for gabapentin.


Subject(s)
Anticonvulsants/pharmacokinetics , Therapeutic Equivalency , Area Under Curve , Biological Variation, Individual , Dibenzazepines/pharmacokinetics , Drug Substitution , Drugs, Generic , Europe , Gabapentin/pharmacokinetics , Humans , Lacosamide/pharmacokinetics , Lamotrigine/pharmacokinetics , Levetiracetam/pharmacokinetics , Oxcarbazepine/pharmacokinetics , Pregabalin/pharmacokinetics , Topiramate/pharmacokinetics , Vigabatrin/pharmacokinetics , Zonisamide/pharmacokinetics
17.
Neuropharmacology ; 185: 108442, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33347884

ABSTRACT

The therapeutic potential of cannabidiol (CBD) in seizure disorders has been known for many years, but it is only in the last decade that major progress has been made in characterizing its preclinical and clinical properties as an antiseizure medication. The mechanisms responsible for protection against seizures are not fully understood, but they are likely to be multifactorial and to include, among others, antagonism of G protein-coupled receptor, desensitization of transient receptor potential vanilloid type 1 channels, potentiation of adenosine-mediated signaling, and enhancement of GABAergic transmission. CBD has a low and highly variable oral bioavailability, and can be a victim and perpetrator of many drug-drug interactions. A pharmaceutical-grade formulation of purified CBD derived from Cannabis sativa has been evaluated in several randomized placebo-controlled adjunctive-therapy trials, which resulted in its regulatory approval for the treatment of seizures associated with Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. Interpretation of results of these trials, however, has been complicated by the occurrence of an interaction with clobazam, which leads to a prominent increase in the plasma concentration of the active metabolite N-desmethylclobazam in CBD-treated patients. Despite impressive advances, significant gaps in knowledge still remain. Areas that require further investigation include the mechanisms underlying the antiseizure activity of CBD in different syndromes, its pharmacokinetic profile in infants and children, potential relationships between plasma drug concentration and clinical response, interactions with other co-administered medications, potential efficacy in other epilepsy syndromes, and magnitude of antiseizure effects independent from interactions with clobazam. This article is part of the special issue on 'Cannabinoids'.


Subject(s)
Anticonvulsants/therapeutic use , Biomedical Research/trends , Cannabidiol/therapeutic use , Epilepsy/drug therapy , Evidence-Based Medicine/trends , Animals , Biomedical Research/methods , Drug Interactions/physiology , Epilepsy/diagnosis , Epilepsy/physiopathology , Evidence-Based Medicine/methods , Fatigue/chemically induced , Humans , Randomized Controlled Trials as Topic/methods
18.
Epilepsia ; 61(11): 2340-2364, 2020 11.
Article in English | MEDLINE | ID: mdl-33190243

ABSTRACT

Since 1992, the Eilat Conferences have provided a forum for all stakeholders in the epilepsy community to appraise the latest data on new antiepileptic drugs and emergency seizure treatments, including, in recent years, updates on progress with the development of novel monitoring and therapeutic devices. Because of the COVID-19 pandemic, the Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV) was held as a fully virtual conference on July 27-30, 2020 for the sessions on drugs and on August 3, 2020 for the sessions on devices, and was attended during the 5 days by >500 participants from 63 countries. This progress report summarizes key preclinical and initial (phase 1) clinical data on eight investigational treatments that are currently in early development, including 2-deoxy-D-glucose, GAO-3-02, JNJ-40411813, NBI-921352, NTX-001, sec-butylpropylacetamide, XEN1101, and XEN496. This report provides an overview of current scenarios in the area of treatment discovery and development. The information presented illustrates a variety of innovative strategies, including exploration of compounds with novel mechanisms of action, transplantation of interneurons into epileptogenic brain regions, and the targeting of rare, previously neglected syndromes.


Subject(s)
Anticonvulsants/therapeutic use , Epilepsy/therapy , Interneurons/transplantation , Animals , Humans
19.
Epilepsia ; 61(11): 2365-2385, 2020 11.
Article in English | MEDLINE | ID: mdl-33165915

ABSTRACT

The Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV) was held as a fully virtual conference from July 27 to July 30, 2020 for the sessions on drugs, and on August 3, 2020 for the sessions on devices. A total of 534 delegates from 63 countries attended lectures and interactive discussions, representing a broad range of disciplines from basic science, clinical research, and clinical care. This progress report provides summaries of recent findings on investigational compounds for which preclinical data as well as data from patient studies were presented. The report includes the following five compounds: anakinra, cenobamate, CVL-865, fenfluramine, and ganaxolone, all with novel modes of action compared to more established antiepileptic drugs. Some of these compounds demonstrated promising results in placebo-controlled phase 3 trials, and two have recently received approval from the US Food and Drug Administration (FDA). These include cenobamate, which was approved by the FDA on November 21, 2019 for the treatment of partial onset (focal) seizures in adults, and fenfluramine oral solution, which was approved by the FDA on June 25, 2020 for the treatment of seizures associated with Dravet syndrome in patients 2 years and older.


Subject(s)
Anticonvulsants/therapeutic use , Congresses as Topic/trends , Drug Development/trends , Drugs, Investigational/therapeutic use , Epilepsy/drug therapy , Research Report/trends , Animals , Drug Development/methods , Epilepsy/epidemiology , Humans , United States/epidemiology
20.
Clin Pharmacokinet ; 59(12): 1493-1500, 2020 12.
Article in English | MEDLINE | ID: mdl-32785853

ABSTRACT

For highly lipophilic drugs, passage into the intestinal lymphatic system rather than the portal vein following oral administration may represent a major alternative route of delivery into the general circulation. Increasing intestinal lymphatic transport provides an effective strategy to improve oral bioavailability when hepatic first-pass metabolism is a major rate-limiting step hampering access to the systemic circulation after oral dosing. The transfer of orally administered, highly lipid-soluble drugs to the lymphatic system is mediated by their association with chylomicrons, large intestinal lipoproteins that are assembled in the enterocytes in the presence of long-chain triglycerides or long-chain fatty acids. Due to its very high lipophilicity, cannabidiol (CBD) has physicochemical features (e.g. logP = 6.3) consistent with an oral absorption mediated at least in part by transport via the intestinal lymphatic system. CBD also undergoes extensive first-pass hepatic metabolism. Formulation changes favoring diversion of orally absorbed CBD from the portal to the lymphatic circulation pathway can result in reduced first-pass liver metabolism, enhanced oral bioavailability, and reduced intra- and intersubject variability in systemic exposure. In this manuscript, we discuss (1) evidence for CBD undergoing hepatic first-pass liver metabolism and lymphatic absorption to a clinically important extent; (2) the potential interplay between improved oral absorption, diversion of orally absorbed drug to the lymphatic system, and magnitude of presystemic elimination in the liver; and (3) strategies by which innovative chemical and/or pharmaceutical delivery systems of CBD with improved bioavailability could be developed.


Subject(s)
Cannabidiol , Liver/metabolism , Lymphatic System , Pharmaceutical Preparations , Administration, Oral , Biological Availability , Cannabidiol/pharmacokinetics , Humans , Intestinal Absorption
SELECTION OF CITATIONS
SEARCH DETAIL
...