Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Front Mol Biosci ; 8: 693325, 2021.
Article in English | MEDLINE | ID: mdl-34291086

ABSTRACT

It has been shown that protein low-sequence complexity domains (LCDs) induce liquid-liquid phase separation (LLPS), which is responsible for the formation of membrane-less organelles including P-granules, stress granules and Cajal bodies. Proteins harbouring LCDs are widely represented among RNA binding proteins often mutated in ALS. Indeed, LCDs predispose proteins to a prion-like behaviour due to their tendency to form amyloid-like structures typical of proteinopathies. Protein post-translational modifications (PTMs) can influence phase transition through two main events: i) destabilizing or augmenting multivalent interactions between phase-separating macromolecules; ii) recruiting or excluding other proteins and/or nucleic acids into/from the condensate. In this manuscript we summarize the existing evidence describing how PTM can modulate LLPS thus favouring or counteracting proteinopathies at the base of neurodegeneration in ALS.

2.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34155103

ABSTRACT

The cancer-free photosensitive trichothiodystrophy (PS-TTD) and the cancer-prone xeroderma pigmentosum (XP) are rare monogenic disorders that can arise from mutations in the same genes, namely ERCC2/XPD or ERCC3/XPB Both XPD and XPB proteins belong to the 10-subunit complex transcription factor IIH (TFIIH) that plays a key role in transcription and nucleotide excision repair, the DNA repair pathway devoted to the removal of ultraviolet-induced DNA lesions. Compelling evidence suggests that mutations affecting the DNA repair activity of TFIIH are responsible for the pathological features of XP, whereas those also impairing transcription give rise to TTD. By adopting a relatives-based whole transcriptome sequencing approach followed by specific gene expression profiling in primary fibroblasts from a large cohort of TTD or XP cases with mutations in ERCC2/XPD gene, we identify the expression alterations specific for TTD primary dermal fibroblasts. While most of these transcription deregulations do not impact on the protein level, very low amounts of prostaglandin I2 synthase (PTGIS) are found in TTD cells. PTGIS catalyzes the last step of prostaglandin I2 synthesis, a potent vasodilator and inhibitor of platelet aggregation. Its reduction characterizes all TTD cases so far investigated, both the PS-TTD with mutations in TFIIH coding genes as well as the nonphotosensitive (NPS)-TTD. A severe impairment of TFIIH and RNA polymerase II recruitment on the PTGIS promoter is found in TTD but not in XP cells. Thus, PTGIS represents a biomarker that combines all PS- and NPS-TTD cases and distinguishes them from XP.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Neoplasms/pathology , Trichothiodystrophy Syndromes/enzymology , Animals , Cells, Cultured , Cytochrome P-450 Enzyme System/genetics , Epoprostenol , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/radiation effects , Gene Expression Profiling , Gene Expression Regulation/radiation effects , Mice , Skin/pathology , Transcription, Genetic , Trichothiodystrophy Syndromes/genetics , Ultraviolet Rays , Xeroderma Pigmentosum/genetics
3.
J Autism Dev Disord ; 51(7): 2538-2542, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32945987

ABSTRACT

A plethora of neuroimaging studies have focused on the discovery of potential neuroendophenotypes useful to understand the etiopathogenesis of autism and predict treatment response. Social robotics has recently been proposed as an effective tool to strengthen the current treatments in children with autism. However, the high clinical heterogeneity characterizing this disorder might interfere with behavioral effects. Neuroimaging is set to overcome these limitations by capturing the level of heterogeneity. Here, we provide a preliminary evaluation of the neural basis of social robotics and how extracting neural hallmarks useful to design more effective behavioral applications. Despite the endophenotype-oriented neuroimaging research approach is in its relative infancy, this preliminary evidence encourages innovation to address its current limitations.


Subject(s)
Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/therapy , Neuroimaging , Robotics/methods , Autistic Disorder , Child , Creativity , Endophenotypes , Humans , Male , Research Report
4.
Aging Clin Exp Res ; 33(4): 747-758, 2021 Apr.
Article in English | MEDLINE | ID: mdl-31583531

ABSTRACT

Alzheimer's disease (AD) is the most frequent neurodegenerative disorder in the elderly, occurring in approximately 20% of people older than 80. The molecular causes of AD are still poorly understood. However, recent studies have shown that Alternative Splicing (AS) is involved in the gene expression reprogramming associated with the functional changes observed in AD patients. In particular, mutations in cis-acting regulatory sequences as well as alterations in the activity and sub-cellular localization of trans-acting splicing factors and components of the spliceosome machinery are associated with splicing abnormalities in AD tissues, which may influence the onset and progression of the disease. In this review, we discuss the current molecular understanding of how alterations in the AS process contribute to AD pathogenesis. Finally, recent therapeutic approaches targeting aberrant AS regulation in AD are also reviewed.


Subject(s)
Alternative Splicing , Alzheimer Disease , Aged , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Humans , Mutation , RNA Splicing/genetics , Spliceosomes/genetics , Spliceosomes/metabolism
5.
Adv Exp Med Biol ; 1270: 31-44, 2021.
Article in English | MEDLINE | ID: mdl-33123991

ABSTRACT

Recently, it has become clearer that tumor plasticity increases the chance that cancer cells could acquire new mechanisms to escape immune surveillance, become resistant to conventional drugs, and spread to distant sites.Effectively, tumor plasticity drives adaptive response of cancer cells to hypoxia and nutrient deprivation leading to stimulation of neoangionesis or tumor escape. Therefore, tumor plasticity is believed to be a great contributor in recurrence and metastatic dissemination of cancer cells. Importantly, it could be an Achilles' heel of cancer if we could identify molecular mechanisms dictating this phenotype.The reactivation of stem-like signalling pathways is considered a great determinant of tumor plasticity; in addition, a key role has been also attributed to tumor microenvironment (TME). Indeed, it has been proved that cancer cells interact with different cells in the surrounding extracellular matrix (ECM). Interestingly, well-established communication represents a potential allied in maintenance of a plastic phenotype in cancer cells supporting tumor growth and spread. An important signalling pathway mediating cancer cell-TME crosstalk is represented by the HGF/c-Met signalling.Here, we review the role of the HGF/c-Met signalling in tumor-stroma crosstalk focusing on novel findings underlying its role in tumor plasticity, immune escape, and development of adaptive mechanisms.


Subject(s)
Hepatocyte Growth Factor/metabolism , Neoplasms/metabolism , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction , Tumor Microenvironment , Humans
6.
Int J Mol Sci ; 21(8)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316575

ABSTRACT

Heat shock activates the transcription of arrays of Satellite III (SatIII) DNA repeats in the pericentromeric heterochromatic domains of specific human chromosomes, the longest of which is on chromosome 9. Long non-coding SatIII RNAs remain associated with transcription sites where they form nuclear stress bodies or nSBs. The biology of SatIII RNAs is still poorly understood. Here, we show that SatIII RNAs and nSBs are detectable up to four days after thermal stress and are linked to defects in chromosome behavior during mitosis. Heat shock perturbs the execution of mitosis. Cells reaching mitosis during the first 3 h of recovery accumulate in pro-metaphase. During the ensuing 48 h, this block is no longer detectable; however, a significant fraction of mitoses shows chromosome segregation defects. Notably, most of lagging chromosomes and chromosomal bridges are bound to nSBs and contain arrays of SatIII DNA. Disappearance of mitotic defects at the end of day 2 coincides with the processing of long non-coding SatIII RNAs into a ladder of small RNAs associated with chromatin and ranging in size from 25 to 75 nt. The production of these molecules does not rely on DICER and Argonaute 2 components of the RNA interference apparatus. Thus, massive transcription of SatIII DNA may contribute to chromosomal instability.


Subject(s)
Chromosomes, Human/metabolism , DNA, Satellite/metabolism , Heat Shock Transcription Factors/genetics , RNA, Long Noncoding/metabolism , Chromosome Segregation , HeLa Cells , Humans , Mitosis , RNA, Small Untranslated/metabolism , Transcription Initiation Site
7.
Cells ; 9(1)2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31877720

ABSTRACT

During tumor progression, hypoxia, nutrient deprivation or changes in the extracellular environment (i.e., induced by anti-cancer drugs) elicit adaptive responses in cancer cells. Cellular plasticity increases the chance that tumor cells may survive in a challenging microenvironment, acquire new mechanisms of resistance to conventional drugs, and spread to distant sites. Re-activation of stem pathways appears as a significant cause of cellular plasticity because it promotes the acquisition of stem-like properties through a profound phenotypic reprogramming of cancer cells. In addition, it is a major contributor to tumor heterogeneity, depending on the coexistence of phenotypically distinct subpopulations in the same tumor bulk. Several cellular mechanisms may drive this fundamental change, in particular, high-throughput sequencing technologies revealed a key role for alternative splicing (AS). Effectively, AS is one of the most important pre-mRNA processes that increases the diversity of transcriptome and proteome in a tissue- and development-dependent manner. Moreover, defective AS has been associated with several human diseases. However, its role in cancer cell plasticity and tumor heterogeneity remains unclear. Therefore, unravelling the intricate relationship between AS and the maintenance of a stem-like phenotype may explain molecular mechanisms underlying cancer cell plasticity and improve cancer diagnosis and treatment.


Subject(s)
Adaptation, Physiological/genetics , Alternative Splicing/physiology , Neoplasms/genetics , Alternative Splicing/genetics , Antineoplastic Agents/metabolism , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phenotype , Transcriptome/genetics , Tumor Microenvironment/genetics
8.
Front Oncol ; 8: 408, 2018.
Article in English | MEDLINE | ID: mdl-30319972

ABSTRACT

Alternative splicing is a pervasive mechanism that molds the transcriptome to meet cell and organism needs. However, how this layer of gene expression regulation is coordinated with other aspects of the cell metabolism is still largely undefined. Glucose is the main energy and carbon source of the cell. Not surprisingly, its metabolism is finely tuned to satisfy growth requirements and in response to nutrient availability. A number of studies have begun to unveil the connections between glucose metabolism and splicing programs. Alternative splicing modulates the ratio between M1 and M2 isoforms of pyruvate kinase in this way determining the choice between aerobic glycolysis and complete glucose oxidation in the Krebs cycle. Reciprocally, intermediates in the Krebs cycle may impact splicing programs at different levels by modulating the activity of 2-oxoglutarate-dependent oxidases. In this review we discuss the molecular mechanisms that coordinate alternative splicing programs with glucose metabolism, two aspects with profound implications in human diseases.

9.
Chem Rev ; 118(8): 4365-4403, 2018 04 25.
Article in English | MEDLINE | ID: mdl-29600857

ABSTRACT

Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.


Subject(s)
Genomic Instability , RNA, Untranslated/genetics , DNA Breaks, Double-Stranded , DNA Damage , Gene Expression Regulation , Humans , RNA Interference , RNA-Binding Proteins/metabolism , Transcription, Genetic
10.
Sci Rep ; 7(1): 9528, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28842646

ABSTRACT

Genome integrity is continuously threatened by endogenous sources of DNA damage including reactive oxygen species (ROS) produced by cell metabolism. Factors of the RNA interference (RNAi) machinery have been recently involved in the cellular response to DNA damage (DDR) in proliferating cells. To investigate the impact of component of RNAi machinery on DDR activation in terminally differentiated cells, we exploited cytoplasmic hybrid (cybrid) cell lines in which mitochondria of sporadic Parkinson's disease patients repopulate neuroblastoma SH-SY5Y-Rho(0) cells. Upon differentiation into dopaminergic neuron-like cells, PD63 cybrid showed increased intracellular level of ROS and chronic DDR activation, compared to other cybrids with the same nuclear background. Importantly, DDR activation in these cells can be prevented by ROS scavenging treatment suggesting that ROS production is indeed causative of nuclear DNA damage. Sequence analysis of the mitogenomes identified a rare and heteroplasmic missense mutation affecting a highly conserved residue of the ND5-subunit of respiratory complex I, which accounts for ROS increase. We demonstrated that the assembly of nuclear DDR foci elicited by oxidative stress in these cells relies on DROSHA, providing the first evidence that components of RNAi machinery play a crucial role also in the mounting of ROS-induced DDR in non-replicating neuronal cells.


Subject(s)
DNA Damage , Mutation, Missense , NADH Dehydrogenase/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Reactive Oxygen Species/metabolism , Ribonuclease III/metabolism , Alleles , Amino Acid Sequence , Cell Differentiation , Cell Line , Cytoplasm/metabolism , Histones/metabolism , Humans , NADH Dehydrogenase/chemistry , Phosphorylation
11.
Eur J Med Chem ; 138: 438-457, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28689095

ABSTRACT

The manuscript deals with the design, synthesis and biological evaluation of novel benzoxazinone-based and indole-based compounds as multifunctional neuroprotective agents. These compounds inhibit human adenosine kinase (hAK) and human glycogen synthase kinase 3 beta (hGSK-3ß) enzymes. Computational analysis based on a molecular docking approach underlined the potential structural requirements for simultaneously targeting both proteins' allosteric sites. In silico hints drove the synthesis of appropriately decorated benzoxazinones and indoles (5a-s, and 6a-c) and biochemical analysis revealed their behavior as allosteric inhibitors of hGSK-3ß. For both our hit 4 and the best compounds of the series (5c,l and 6b) the potential antioxidant profile was assessed in human neuroblastoma cell lines (IMR 32, undifferentiated and neuronal differentiated), by evaluating the protective effect of selected compounds against H2O2 cytotoxicity and reactive oxygen species (ROS) production. Results showed a strong efficacy of the tested compounds, even at the lower doses, in counteracting the induced oxidative stress (50 µM of H2O2) and in preventing ROS formation. In addition, the tested compounds did not show any cytotoxic effect determined by the LDH release, at the concentration range analyzed (from 0.1 to 50 µM). This study allowed the identification of compound 5l, as the first dual hAK/hGSK-3ß inhibitor reported to date. Compound 5l, which behaves as an effective antioxidant, holds promise for the development of new series of potential therapeutic agents for the treatment of neurodegenerative diseases characterized by an innovative pharmacological profile.


Subject(s)
Adenosine Kinase/antagonists & inhibitors , Antioxidants/pharmacology , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Neuroblastoma/metabolism , Neuroprotective Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Adenosine Kinase/metabolism , Antioxidants/chemical synthesis , Antioxidants/chemistry , Cell Line, Tumor , Dose-Response Relationship, Drug , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/pharmacology , Molecular Structure , Neuroblastoma/pathology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Oxidative Stress/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
13.
EXCLI J ; 14: 95-108, 2015.
Article in English | MEDLINE | ID: mdl-26600742

ABSTRACT

Etoposide derives from podophyllotoxin, a toxin found in the American Mayapple. It was first synthesized in 1966 and approved for cancer therapy in 1983 by the U.S. Food and Drug Administration (Hande, 1998[25]). Starting from 1980s several studies demonstrated that etoposide targets DNA topoisomerase II activities thus leading to the production of DNA breaks and eliciting a response that affects several aspects of cell metabolisms. In this review we will focus on molecular mechanisms that account for the biological effect of etoposide.

14.
Nat Commun ; 6: 8479, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26446569

ABSTRACT

Vascular lumen formation is a fundamental step during angiogenesis; yet, the molecular mechanisms underlying this process are poorly understood. Recent studies have shown that neural and vascular systems share common anatomical, functional and molecular similarities. Here we show that the organization of endothelial lumen is controlled at the post-transcriptional level by the alternative splicing (AS) regulator Nova2, which was previously considered to be neural cell-specific. Nova2 is expressed during angiogenesis and its depletion disrupts vascular lumen formation in vivo. Similarly, Nova2 depletion in cultured endothelial cells (ECs) impairs the apical distribution and the downstream signalling of the Par polarity complex, resulting in altered EC polarity, a process required for vascular lumen formation. These defects are linked to AS changes of Nova2 target exons affecting the Par complex and its regulators. Collectively, our results reveal that Nova2 functions as an AS regulator in angiogenesis and is a novel member of the 'angioneurins' family.


Subject(s)
Alternative Splicing/physiology , Antigens, Neoplasm/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/physiology , Neovascularization, Physiologic/physiology , RNA-Binding Proteins/metabolism , Animals , Antigens, Neoplasm/genetics , Cells, Cultured , Mice , Neuro-Oncological Ventral Antigen , RNA-Binding Proteins/genetics
15.
PLoS One ; 10(7): e0130561, 2015.
Article in English | MEDLINE | ID: mdl-26151554

ABSTRACT

Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression.


Subject(s)
Cell Shape/genetics , DNA Ligases/genetics , DNA Replication/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Blotting, Western , Cell Adhesion/genetics , Cell Cycle/genetics , Cell Line , Cell Line, Transformed , Cell Movement/genetics , DNA Damage , DNA Ligase ATP , DNA Ligases/deficiency , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Profiling , Humans , Microscopy, Fluorescence , Mutation , Phosphorylation , Reverse Transcriptase Polymerase Chain Reaction , Time-Lapse Imaging/methods
16.
J Med Chem ; 58(11): 4590-609, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25923950

ABSTRACT

Fyn is a member of the Src-family of nonreceptor protein-tyrosine kinases. Its abnormal activity has been shown to be related to various human cancers as well as to severe pathologies, such as Alzheimer's and Parkinson's diseases. Herein, a structure-based drug design protocol was employed aimed at identifying novel Fyn inhibitors. Two hits from commercial sources (1, 2) were found active against Fyn with K(i) of about 2 µM, while derivative 4a, derived from our internal library, showed a K(i) of 0.9 µM. A hit-to-lead optimization effort was then initiated on derivative 4a to improve its potency. Slightly modifications rapidly determine an increase in the binding affinity, with the best inhibitors 4c and 4d having K(i)s of 70 and 95 nM, respectively. Both compounds were found able to inhibit the phosphorylation of the protein Tau in an Alzheimer's model cell line and showed antiproliferative activities against different cancer cell lines.


Subject(s)
Adenosine Triphosphate/metabolism , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-fyn/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Tauopathies/drug therapy , Antineoplastic Agents/chemistry , Binding Sites , Cell Proliferation/drug effects , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Neoplasms/enzymology , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-fyn/metabolism , Pyrazoles/chemistry , Pyrimidines/chemistry , Signal Transduction/drug effects , Structure-Activity Relationship , Tauopathies/enzymology , Tumor Cells, Cultured
17.
Biochim Biophys Acta ; 1849(6): 743-50, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25623890

ABSTRACT

CD44 is a complex cell adhesion molecule that mediates communication and adhesion between adjacent cells as well as between cells and the extracellular matrix. CD44 pre-mRNA produces various mRNA isoforms through alternative splicing of 20 exons, among which exons 1-5 (C1-C5) and 16-20 (C6-C10) are constant exons, whereas exons 6-15 (V1-V10) are variant exons. CD44 V10 exon has important roles in breast tumor progression and Hodgkin lymphoma. Here we show that increased expression of hnRNP L inhibits V10 exon splicing of CD44 pre-mRNA, whereas reduced expression of hnRNP L promotes V10 exon splicing. In addition, hnRNP L also promotes V10 splicing of endogenous CD44 pre-mRNA. Through mutation analysis, we demonstrate that the effects of hnRNP L on V10 splicing are abolished when the CA-rich sequence on the upstream intron of V10 exon is disrupted. However, hnRNP L effects are stronger if more CA-repeats are provided. Furthermore, we show that hnRNP L directly contacts the CA-rich sequence. Importantly, we provide evidences that hnRNP L inhibits U2AF65 binding on the upstream Py tract of V10 exon. Our results reveal that hnRNP L is a new regulator for CD44 V10 exon splicing.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein L/biosynthesis , Hyaluronan Receptors/genetics , Introns/genetics , RNA Splicing/genetics , Cell Adhesion/genetics , Exons/genetics , Gene Expression Regulation , HeLa Cells , Heterogeneous-Nuclear Ribonucleoprotein L/metabolism , Humans , Hyaluronan Receptors/metabolism , Nuclear Proteins/metabolism , Ribonucleoproteins/metabolism , Splicing Factor U2AF
18.
Cell Cycle ; 14(1): 64-73, 2015.
Article in English | MEDLINE | ID: mdl-25483070

ABSTRACT

To date, a complete understanding of the molecular events leading to DNA replication origin activation in mammalian cells still remains elusive. In this work, we report the results of a high resolution chromatin immunoprecipitation study to detect proteins interacting with the human Lamin B2 replication origin. In addition to the pre-RC component ORC4 and to the transcription factors USF and HOXC13, we found that 2 components of the AP-1 transcription factor, c-Fos and c-Jun, are also associated with the origin DNA during the late G1 phase of the cell cycle and that these factors interact with ORC4. Both DNA replication and AP-1 factor binding to the origin region were perturbed by cell treatment with merbarone, a topoisomerase II inhibitor, suggesting that DNA topology is essential for determining origin function.


Subject(s)
DNA/metabolism , Lamin Type B/metabolism , Cell Line, Tumor , DNA Replication/drug effects , G1 Phase , HeLa Cells , Homeodomain Proteins/metabolism , Humans , Immunoprecipitation , Lamin Type B/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Origin Recognition Complex/metabolism , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Replication Origin/drug effects , Thiobarbiturates/pharmacology , Topoisomerase II Inhibitors/pharmacology , Transcription Factor AP-1/metabolism , Upstream Stimulatory Factors/metabolism
19.
Biochim Biophys Acta ; 1839(11): 1132-40, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25220236

ABSTRACT

The product of proto-oncogene Ron is a human receptor for the macrophage-stimulating protein (MSP). Upon activation, Ron is able to induce cell dissociation, migration and matrix invasion. Exon 11 skipping of Ron pre-mRNA produces Ron△165 protein that is constitutively active even in the absence of its ligand. Here we show that knockdown of SRSF2 promotes the decrease of exon 11 inclusion, whereas overexpression of SRSF2 promotes exon 11 inclusion. We demonstrate that SRSF2 promotes exon 11 inclusion through splicing and transcription procedure. We also present evidence that reduced expression of SRSF2 induces a decrease in the splicing of both introns 10 and 11; by contrast, overexpression of SRSF2 induces an increase in the splicing of introns 10 and 11. Through mutation analysis, we show that SRSF2 functionally targets and physically interacts with CGAG sequence on exon 11. In addition, we reveal that the weak strength of splice sites of exon 11 is not required for the function of SRSF2 on the splicing of Ron exon 11. Our results indicate that SRSF2 promotes exon 11 inclusion of Ron proto-oncogene through targeting exon 11. Our study provides a novel mechanism by which Ron is expressed.


Subject(s)
Nuclear Proteins/physiology , RNA Splicing , Receptor Protein-Tyrosine Kinases/genetics , Ribonucleoproteins/physiology , Transcription, Genetic , Cells, Cultured , Exons/genetics , HeLa Cells , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Proto-Oncogene Mas , Proto-Oncogenes/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Serine-Arginine Splicing Factors
20.
Semin Cell Dev Biol ; 32: 30-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24657195

ABSTRACT

Alternative splicing emerges as a potent and pervasive mechanism of gene expression regulation that expands the coding capacity of the genome and forms an intermediate layer of regulation between transcriptional and post-translational networks. Indeed, alternative splicing occupies a pivotal position in developmental programs and in the cell response to external and internal stimuli. Not surprisingly, therefore, its deregulation frequently leads to human disease. In this review we provide an updated overview of the impact of alternative splicing on tumorigenesis. Moreover, we discuss the intricacy of the reciprocal interactions between alternative splicing programs and signal transduction pathways, which appear to be crucially linked to cancer progression in response to the tumor microenvironment. Finally, we focus on the recently described interplay between splicing and chromatin organization which is expected to shed new lights into gene expression regulation in normal and cancer cells.


Subject(s)
Alternative Splicing , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Signal Transduction/genetics , Epithelial-Mesenchymal Transition/genetics , Humans , Models, Genetic , Neoplasms/metabolism , Neoplasms/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Serine-Arginine Splicing Factors , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL