Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Front Microbiol ; 15: 1368813, 2024.
Article in English | MEDLINE | ID: mdl-38765680

ABSTRACT

Florfenicol (Ff) is an antimicrobial agent belonging to the class amphenicol used for the treatment of bacterial infections in livestock, poultry, and aquaculture (animal farming). It inhibits protein synthesis. Ff is an analog of chloramphenicol, an amphenicol compound on the WHO essential medicine list that is used for the treatment of human infections. Due to the extensive usage of Ff in animal farming, zoonotic pathogens have developed resistance to this antimicrobial agent. There are numerous reports of resistance genes from organisms infecting or colonizing animals found in human pathogens, suggesting a possible exchange of genetic materials. One of these genes is floR, a gene that encodes for an efflux pump that removes Ff from bacterial cells, conferring resistance against amphenicol, and is often associated with mobile genetic elements and other resistant determinants. In this study, we analyzed bacterial isolates recovered in rural Thailand from patients and environmental samples collected for disease monitoring. Whole genome sequencing was carried out for all the samples collected. Speciation and genome annotation was performed revealing the presence of the floR gene in the bacterial genome. The minimum inhibitory concentration (MIC) was determined for Ff and chloramphenicol. Chromosomal and phylogenetic analyses were performed to investigate the acquisition pattern of the floR gene. The presence of a conserved floR gene in unrelated Acinetobacter spp. isolated from human bacterial infections and environmental samples was observed, suggesting multiple and independent inter-species genetic exchange of drug-resistant determinants. The floR was found to be in the variable region containing various mobile genetic elements and other antibiotic resistance determinants; however, no evidence of HGT could be found. The floR gene identified in this study is chromosomal for all isolates. The study highlights a plausible impact of antimicrobials used in veterinary settings on human health. Ff shares cross-resistance with chloramphenicol, which is still in use in several countries. Furthermore, by selecting for floR-resistance genes, we may be selecting for and facilitating the zoonotic and reverse zoonotic exchange of other flanking resistance markers between human and animal pathogens or commensals with detrimental public health consequences.

2.
Antimicrob Agents Chemother ; 68(5): e0028024, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38587391

ABSTRACT

Testing Plasmodium vivax antimicrobial sensitivity is limited to ex vivo schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using Plasmodium cynomolgi as a model for P. vivax, we determined the physiologically significant delayed death effect induced by doxycycline [IC50(96 h), 1,401 ± 607 nM]. As expected, IC50(96 h) to chloroquine (20.4 nM), piperaquine (12.6 µM), and tafenoquine (1,424 nM) were not affected by extended exposure.


Subject(s)
Aminoquinolines , Antimalarials , Doxycycline , Piperazines , Plasmodium cynomolgi , Plasmodium vivax , Doxycycline/pharmacology , Antimalarials/pharmacology , Aminoquinolines/pharmacology , Plasmodium vivax/drug effects , Plasmodium cynomolgi/drug effects , Chloroquine/pharmacology , Animals , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , Quinolines/pharmacology , Inhibitory Concentration 50 , Humans , Parasitic Sensitivity Tests
3.
iScience ; 27(2): 108875, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38313058

ABSTRACT

Klebsiella pneumoniae (Kp) infection is an important healthcare concern. The ST258 classical (c)Kp strain is dominant in hospital-acquired infections in North America and Europe, while ST23 hypervirulent (hv)Kp prevails in community-acquired infections in Asia. This study aimed to develop symptomatic mucosal infection models in mice that mirror natural infections in humans to gain a deeper understanding of Kp mucosal pathogenesis. We showed that cKp replicates in the nasal cavity instead of the lungs, and this early infection event is crucial for the establishment of chronic colonization in the cecum and colon. In contrast, hvKp replicates directly in the lungs to lethal bacterial load, and early infection of esophagus supported downstream transient colonization in the ileum and cecum. Here, we have developed an in vivo model that illuminates how differences in Kp tropism are responsible for virulence and disease phenotype in cKp and hvKp, providing the basis for further mechanistic study.

5.
NPJ Vaccines ; 8(1): 127, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37626082

ABSTRACT

Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis (Mtb). Whilst a functional role for humoral immunity in Mtb protection remains poorly defined, previous studies have suggested that antibodies can contribute towards host defense. Thus, identifying the critical components in the antibody repertoires from immune, chronically exposed, healthy individuals represents an approach for identifying new determinants for natural protection. In this study, we performed a thorough analysis of the IgG/IgA memory B cell repertoire from occupationally exposed, immune volunteers. We detail the identification and selection of a human monoclonal antibody that exhibits protective activity in vivo and show that it targets a virulence factor LpqH. Intriguingly, protection in both human ex vivo and murine challenge experiments was isotype dependent, with most robust protection being mediated via IgG2 and IgA. These data have important implications for our understanding of natural mucosal immunity for Mtb and highlight a new target for future vaccine development.

6.
J Infect Dis ; 227(10): 1121-1126, 2023 05 12.
Article in English | MEDLINE | ID: mdl-36478252

ABSTRACT

The lack of a long-term in vitro culture method has severely restricted the study of Plasmodium vivax, in part because it limits genetic manipulation and reverse genetics. We used the recently optimized Plasmodium cynomolgi Berok in vitro culture model to investigate the putative P. vivax drug resistance marker MDR1 Y976F. Introduction of this mutation using clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) increased sensitivity to mefloquine, but had no significant effect on sensitivity to chloroquine, amodiaquine, piperaquine, and artesunate. To our knowledge, this is the first reported use of CRISPR-Cas9 in P. cynomolgi, and the first reported integrative genetic manipulation of this species.


Subject(s)
Antimalarials , Plasmodium cynomolgi , Mefloquine/pharmacology , Antimalarials/pharmacology , Chloroquine/pharmacology , Plasmodium vivax/genetics , Drug Resistance/genetics , Drug Resistance, Multiple/genetics , Plasmodium falciparum
7.
Phage (New Rochelle) ; 3(1): 6-11, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-36161195

ABSTRACT

Bacteriophages and phage-derived proteins are a promising class of antibacterial agents that experience a growing worldwide interest. To map ongoing phage research in Singapore and neighboring countries, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore (NTU) and Yong Loo Lin School of Medicine, National University of Singapore (NUS) recently co-organized a virtual symposium on Bacteriophage and Bacteriophage-Derived Technologies, which was attended by more than 80 participants. Topics were discussed relating to phage life cycles, diversity, the roles of phages in biofilms and the human gut microbiome, engineered phage lysins to combat polymicrobial infections in wounds, and the challenges and prospects of clinical phage therapy. This perspective summarizes major points discussed during the symposium and new perceptions that emerged after the panel discussion.

8.
Parasitol Int ; 89: 102589, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35470066

ABSTRACT

The absence of a routine continuous in vitro cultivation method for Plasmodium vivax, an important globally distributed parasite species causing malaria in humans, has restricted investigations to field and clinical sampling. Such a method has recently been developed for the Berok strain of P. cynomolgi, a parasite of macaques that has long been used as a model for P. vivax, as these two parasites are nearly indistinguishable biologically and are genetically closely related. The availability of the P. cynomolgi Berok in routine continuous culture provides for the first time an opportunity to conduct a plethora of functional studies. However, the initial cultivation protocol proved unsuited for investigations requiring extended cultivation times, such as reverse genetics and drug resistance. Here we have addressed some of the critical obstacles to this, and we propose a set of modifications that help overcome them.


Subject(s)
Malaria, Vivax , Malaria , Parasites , Plasmodium cynomolgi , Animals , Macaca/parasitology , Malaria/parasitology , Malaria, Vivax/parasitology , Plasmodium vivax
9.
Sci Rep ; 11(1): 19905, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620901

ABSTRACT

Improved control of Plasmodium vivax malaria can be achieved with the discovery of new antimalarials with radical cure efficacy, including prevention of relapse caused by hypnozoites residing in the liver of patients. We screened several compound libraries against P. vivax liver stages, including 1565 compounds against mature hypnozoites, resulting in one drug-like and several probe-like hits useful for investigating hypnozoite biology. Primaquine and tafenoquine, administered in combination with chloroquine, are currently the only FDA-approved antimalarials for radical cure, yet their activity against mature P. vivax hypnozoites has not yet been demonstrated in vitro. By developing an extended assay, we show both drugs are individually hypnozonticidal and made more potent when partnered with chloroquine, similar to clinically relevant combinations. Post-hoc analyses of screening data revealed excellent performance of ionophore controls and the high quality of single point assays, demonstrating a platform able to support screening of greater compound numbers. A comparison of P. vivax liver stage activity data with that of the P. cynomolgi blood, P. falciparum blood, and P. berghei liver stages reveals overlap in schizonticidal but not hypnozonticidal activity, indicating that the delivery of new radical curative agents killing P. vivax hypnozoites requires an independent and focused drug development test cascade.


Subject(s)
Aminoquinolines/pharmacology , Antimalarials/pharmacology , Liver/parasitology , Malaria, Vivax/parasitology , Parasitic Sensitivity Tests , Plasmodium vivax/drug effects , Aminoquinolines/chemistry , Aminoquinolines/therapeutic use , Antimalarials/chemistry , Antimalarials/therapeutic use , Chloroquine/pharmacology , Dose-Response Relationship, Drug , Drug Discovery/methods , Drug Synergism , Humans , Life Cycle Stages , Malaria, Vivax/drug therapy , Molecular Structure , Parasitic Sensitivity Tests/methods , Plasmodium vivax/growth & development , ROC Curve , Time Factors
10.
NPJ Vaccines ; 5: 81, 2020.
Article in English | MEDLINE | ID: mdl-32944295

ABSTRACT

The SARS-CoV-2 outbreak originated in China in late 2019 and has since spread to pandemic proportions. Diagnostics, therapeutics and vaccines are urgently needed. We model the trimeric Spike protein, including flexible loops and all N-glycosylation sites, in order to elucidate accessible epitopes for antibody-based diagnostics, therapeutics and vaccine development. Based on published experimental data, six homogeneous glycosylation patterns and two heterogeneous ones were used for the analysis. The glycan chains alter the accessible surface areas on the S-protein, impeding antibody-antigen recognition. In presence of glycan, epitopes on the S1 subunit, that notably contains the receptor binding domain, remain mostly accessible to antibodies while those present on the S2 subunit are predominantly inaccessible. We identify 28 B-cell epitopes in the Spike structure and group them as non-affected by the glycan cloud versus those which are strongly masked by the glycan cloud, resulting in a list of favourable epitopes as targets for vaccine development, antibody-based therapy and diagnostics.

11.
Proteomics ; 19(19): e1900021, 2019 10.
Article in English | MEDLINE | ID: mdl-31444903

ABSTRACT

A major obstacle impeding malaria research is the lack of an in vitro system capable of supporting infection through the entire liver stage cycle of the parasite, including that of the dormant forms known as hypnozoites. Primary hepatocytes lose their liver specific functions in long-term in vitro culture. The malaria parasite Plasmodium initiates infection in hepatocyte. This corresponds to the first step of clinically silent infection and development of malaria parasite Plasmodium in the liver. Thus, the liver stage is an ideal target for development of novel antimalarial interventions and vaccines. However, drug discovery against Plasmodium liver stage is severely hampered by the poor understanding of host-parasite interactions during the liver stage infection and development. In this study, tandem mass tag labeling based quantitative proteomic analysis is performed in simian primary hepatocytes cultured in three different systems of susceptibility to Plasmodium infection. The results display potential candidate molecular markers, including asialoglycoprotein receptor, apolipoproteins, squalene synthase, and scavenger receptor B1 (SR-BI) that facilitate productive infection and full development in relapsing Plasmodium species. The identification of these candidate proteins required for constructive infection and development of hepatic malaria liver stages paves the way to explore them as therapeutic targets.


Subject(s)
Hepatocytes/metabolism , Malaria/metabolism , Proteome/metabolism , Proteomics/methods , Animals , Cells, Cultured , Chromatography, Liquid , Hepatocytes/parasitology , Host-Parasite Interactions , Humans , Macaca fascicularis , Malaria/parasitology , Plasmodium/physiology , Proteome/genetics , Tandem Mass Spectrometry
12.
Nat Commun ; 10(1): 3635, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406175

ABSTRACT

The ability to culture pathogenic organisms substantially enhances the quest for fundamental knowledge and the development of vaccines and drugs. Thus, the elaboration of a protocol for the in vitro cultivation of the erythrocytic stages of Plasmodium falciparum revolutionized research on this important parasite. However, for P. vivax, the most widely distributed and difficult to treat malaria parasite, a strict preference for reticulocytes thwarts efforts to maintain it in vitro. Cultivation of P. cynomolgi, a macaque-infecting species phylogenetically close to P. vivax, was briefly reported in the early 1980s, but not pursued further. Here, we define the conditions under which P. cynomolgi can be adapted to long term in vitro culture to yield parasites that share many of the morphological and phenotypic features of P. vivax. We further validate the potential of this culture system for high-throughput screening to prime and accelerate anti-P. vivax drug discovery efforts.


Subject(s)
Erythrocytes/parasitology , Macaca/parasitology , Malaria/veterinary , Monkey Diseases/parasitology , Plasmodium cynomolgi/growth & development , Animals , Anopheles/parasitology , Malaria/parasitology , Malaria/transmission
13.
Biomaterials ; 216: 119221, 2019 09.
Article in English | MEDLINE | ID: mdl-31195301

ABSTRACT

Hypnozoites are the liver stage non-dividing form of the malaria parasite that are responsible for relapse and acts as a natural reservoir for human malaria Plasmodium vivax and P. ovale as well as a phylogenetically related simian malaria P. cynomolgi. Our understanding of hypnozoite biology remains limited due to the technical challenge of requiring the use of primary hepatocytes and the lack of robust and predictive in vitro models. In this study, we developed a malaria liver stage model using 3D spheroid-cultured primary hepatocytes. The infection of primary hepatocytes in suspension led to increased infectivity of both P. cynomolgi and P. vivax infections. We demonstrated that this hepatic spheroid model was capable of maintaining long term viability, hepatocyte specific functions and cell polarity which enhanced permissiveness and thus, permitting for the complete development of both P. cynomolgi and P. vivax liver stage parasites in the infected spheroids. The model described here was able to capture the full liver stage cycle starting with sporozoites and ending in the release of hepatic merozoites capable of invading simian erythrocytes in vitro. Finally, we showed that this system can be used for compound screening to discriminate between causal prophylactic and cidal antimalarials activity in vitro for relapsing malaria.


Subject(s)
Antimalarials/pharmacology , Hepatocytes/parasitology , Malaria/drug therapy , Plasmodium/drug effects , Animals , Cell Culture Techniques/methods , Cell Line , Cells, Cultured , Hepatocytes/cytology , Humans , Liver/cytology , Liver/parasitology , Macaca fascicularis , Macaca mulatta , Parasitic Sensitivity Tests/methods , Recurrence , Secondary Prevention , Spheroids, Cellular/cytology , Spheroids, Cellular/parasitology , Sporozoites/drug effects
14.
Elife ; 82019 05 16.
Article in English | MEDLINE | ID: mdl-31094679

ABSTRACT

Plasmodium vivax hypnozoites persist in the liver, cause malaria relapse and represent a major challenge to malaria elimination. Our previous transcriptomic study provided a novel molecular framework to enhance our understanding of the hypnozoite biology (Voorberg-van der Wel A, et al., 2017). In this dataset, we identified and characterized the Liver-Specific Protein 2 (LISP2) protein as an early molecular marker of liver stage development. Immunofluorescence analysis of hepatocytes infected with relapsing malaria parasites, in vitro (P. cynomolgi) and in vivo (P. vivax), reveals that LISP2 expression discriminates between dormant hypnozoites and early developing parasites. We further demonstrate that prophylactic drugs selectively kill all LISP2-positive parasites, while LISP2-negative hypnozoites are only sensitive to anti-relapse drug tafenoquine. Our results provide novel biological insights in the initiation of liver stage schizogony and an early marker suitable for the development of drug discovery assays predictive of anti-relapse activity.


Subject(s)
Malaria, Vivax/genetics , Plasmodium cynomolgi/genetics , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Aminoquinolines/pharmacology , Animals , Antimalarials/pharmacology , Biomarkers/metabolism , Biomarkers, Pharmacological , Hepatocytes/metabolism , Hepatocytes/parasitology , Host-Parasite Interactions/genetics , Humans , Liver/drug effects , Liver/parasitology , Macaca mulatta/genetics , Macaca mulatta/parasitology , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , Plasmodium cynomolgi/parasitology , Plasmodium vivax/drug effects , Plasmodium vivax/pathogenicity , Protozoan Proteins/metabolism , Sporozoites/genetics , Transcriptome/drug effects
15.
Article in English | MEDLINE | ID: mdl-30564307

ABSTRACT

Treating M. abscessus infection is challenging due to the potent ß-lactamase BlaMab (Beta-lactamase of M. abscessus). Avibactam is a non-ß-lactam, ß-lactamase inhibitor shown to inhibit BlaMab. We tested whether avibactem can render piperacillin effective against M. Abscessus. In-vitro, avibactam enhanced the activity of piperacillin by 16-32 fold, with no significant effect on meropenem. In an in-vivo Galleria mellonella model, meropenem and piperacillin/avibactam significantly decreased infection burden compared to untreated controls. Neither piperacillin nor avibactam alone had a significant effect.


Subject(s)
Azabicyclo Compounds/therapeutic use , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium abscessus/drug effects , Piperacillin/therapeutic use , beta-Lactamase Inhibitors/therapeutic use , Animals , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/pharmacology , Disease Models, Animal , Drug Combinations , Drug Synergism , Meropenem/therapeutic use , Microbial Sensitivity Tests , Moths , Piperacillin/administration & dosage , Piperacillin/pharmacology , beta-Lactamases
16.
Article in English | MEDLINE | ID: mdl-29530849

ABSTRACT

Artemisinin (ART) resistance has spread through Southeast Asia, posing a serious threat to the control and elimination of malaria. ART resistance has been associated with mutations in the Plasmodium falciparum kelch-13 (Pfk13) propeller domain. Phenotypically, ART resistance is defined as delayed parasite clearance in patients due to the reduced susceptibility of early ring-stage parasites to the active metabolite of ART dihydroartemisinin (DHA). Early rings can enter a state of quiescence upon DHA exposure and resume growth in its absence. These quiescent rings are referred to as dormant rings or DHA-pretreated rings (here called dormant rings). The imidazolopiperazines (IPZ) are a novel class of antimalarial drugs that have demonstrated efficacy in early clinical trials. Here, we characterized the stage of action of the IPZ GNF179 and evaluated its activity against rings and dormant rings in wild-type and ART-resistant parasites. Unlike DHA, GNF179 does not induce dormancy. We show that GNF179 is more rapidly cidal against schizonts than against ring and trophozoite stages. However, with 12 h of exposure, the compound effectively kills rings and dormant rings of both susceptible and ART-resistant parasites within 72 h. We further demonstrate that in combination with ART, GNF179 effectively prevents recrudescence of dormant rings, including those bearing pfk13 propeller mutations.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Imidazoles/pharmacology , Piperazines/pharmacology , Plasmodium falciparum/drug effects , Parasitic Sensitivity Tests , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Schizonts/drug effects , Schizonts/metabolism , Trophozoites/drug effects , Trophozoites/metabolism
17.
Elife ; 62017 12 07.
Article in English | MEDLINE | ID: mdl-29215331

ABSTRACT

Plasmodium liver hypnozoites, which cause disease relapse, are widely considered to be the last barrier towards malaria eradication. The biology of this quiescent form of the parasite is poorly understood which hinders drug discovery. We report a comparative transcriptomic dataset of replicating liver schizonts and dormant hypnozoites of the relapsing parasite Plasmodium cynomolgi. Hypnozoites express only 34% of Plasmodium physiological pathways, while 91% are expressed in replicating schizonts. Few known malaria drug targets are expressed in quiescent parasites, but pathways involved in microbial dormancy, maintenance of genome integrity and ATP homeostasis were robustly expressed. Several transcripts encoding heavy metal transporters were expressed in hypnozoites and the copper chelator neocuproine was cidal to all liver stage parasites. This transcriptomic dataset is a valuable resource for the discovery of vaccines and effective treatments to combat vivax malaria.


Subject(s)
Gene Expression Profiling , Liver/parasitology , Macaca mulatta/parasitology , Plasmodium cynomolgi/growth & development , Plasmodium cynomolgi/genetics , Schizonts/growth & development , Schizonts/genetics , Animals , Female , Male
18.
Blood ; 130(11): 1357-1363, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28698207

ABSTRACT

Two malaria parasites of Southeast Asian macaques, Plasmodium knowlesi and P cynomolgi, can infect humans experimentally. In Malaysia, where both species are common, zoonotic knowlesi malaria has recently become dominant, and cases are recorded throughout the region. By contrast, to date, only a single case of naturally acquired P cynomolgi has been found in humans. In this study, we show that whereas P cynomolgi merozoites invade monkey red blood cells indiscriminately in vitro, in humans, they are restricted to reticulocytes expressing both transferrin receptor 1 (Trf1 or CD71) and the Duffy antigen/chemokine receptor (DARC or CD234). This likely contributes to the paucity of detectable zoonotic cynomolgi malaria. We further describe postinvasion morphologic and rheologic alterations in P cynomolgi-infected human reticulocytes that are strikingly similar to those observed for P vivax These observations stress the value of P cynomolgi as a model in the development of blood stage vaccines against vivax malaria.


Subject(s)
Antigens, CD/metabolism , Duffy Blood-Group System/metabolism , Plasmodium cynomolgi/physiology , Receptors, Cell Surface/metabolism , Receptors, Transferrin/metabolism , Reticulocytes/parasitology , Tropism , Zoonoses/parasitology , Animals , Erythrocytes/parasitology , Host-Parasite Interactions , Humans , Macaca , Merozoites/physiology , Plasmodium vivax/physiology , Rheology
19.
BMC Genomics ; 17(1): 947, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27871225

ABSTRACT

BACKGROUND: Whole genome sequencing (WGS) has rapidly become an important research tool in tuberculosis epidemiology and is likely to replace many existing methods in public health microbiology in the near future. WGS-based methods may be particularly useful in areas with less diverse Mycobacterium tuberculosis populations, such as New York City, where conventional genotyping is often uninformative and field epidemiology often difficult. This study applies four candidate strategies for WGS-based identification of emerging M. tuberculosis subpopulations, employing both phylogenomic and population genetics methods. RESULTS: M. tuberculosis subpopulations in New York City and New Jersey can be distinguished via phylogenomic reconstruction, evidence of demographic expansion and subpopulation-specific signatures of selection, and by determination of subgroup-defining nucleotide substitutions. These methods identified known historical outbreak clusters and previously unidentified subpopulations within relatively monomorphic M. tuberculosis endemic clone groups. Neutrality statistics based on the site frequency spectrum were less useful for identifying M. tuberculosis subpopulations, likely due to the low levels of informative genetic variation in recently diverged isolate groups. In addition, we observed that isolates from New York City endemic clone groups have acquired multiple non-synonymous SNPs in virulence- and growth-associated pathways, and relatively few mutations in drug resistance-associated genes, suggesting that overall pathoadaptive fitness, rather than the acquisition of drug resistance mutations, has played a central role in the evolutionary history and epidemiology of M. tuberculosis subpopulations in New York City. CONCLUSIONS: Our results demonstrate that some but not all WGS-based methods are useful for detection of emerging M. tuberculosis clone groups, and support the use of phylogenomic reconstruction in routine tuberculosis laboratory surveillance, particularly in areas with relatively less diverse M. tuberculosis populations. Our study also supports the use of wider-reaching phylogenomic and population genomic methods in tuberculosis public health practice, which can support tuberculosis control activities by identifying genetic polymorphisms contributing to epidemiological success in local M. tuberculosis populations and possibly explain why certain isolate groups are apparently more successful in specific host populations.


Subject(s)
Genome, Bacterial , Genomics , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/genetics , Tuberculosis/epidemiology , Tuberculosis/microbiology , Cell Wall/genetics , Cell Wall/metabolism , Drug Resistance, Bacterial , Genomics/methods , Genotype , High-Throughput Nucleotide Sequencing , History, 20th Century , History, 21st Century , Humans , Lipid Metabolism , Molecular Epidemiology , Mycobacterium tuberculosis/metabolism , New Jersey/epidemiology , New York City/epidemiology , Phylogeny , Polymorphism, Single Nucleotide , Selection, Genetic , Tuberculosis/history
20.
Nat Microbiol ; 1: 16166, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27642791

ABSTRACT

A molecular understanding of drug resistance mechanisms enables surveillance of the effectiveness of new antimicrobial therapies during development and deployment in the field. We used conventional drug resistance selection as well as a regime of limiting dilution at early stages of drug treatment to probe two antimalarial imidazolopiperazines, KAF156 and GNF179. The latter approach permits the isolation of low-fitness mutants that might otherwise be out-competed during selection. Whole-genome sequencing of 24 independently derived resistant Plasmodium falciparum clones revealed four parasites with mutations in the known cyclic amine resistance locus (pfcarl) and a further 20 with mutations in two previously unreported P. falciparum drug resistance genes, an acetyl-CoA transporter (pfact) and a UDP-galactose transporter (pfugt). Mutations were validated both in vitro by CRISPR editing in P. falciparum and in vivo by evolution of resistant Plasmodium berghei mutants. Both PfACT and PfUGT were localized to the endoplasmic reticulum by fluorescence microscopy. As mutations in pfact and pfugt conveyed resistance against additional unrelated chemical scaffolds, these genes are probably involved in broad mechanisms of antimalarial drug resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...