Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters











Publication year range
1.
Phys Chem Chem Phys ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39355915

ABSTRACT

Nanocrystal (NC) assemblies, such as films or NC-based three-dimensional networks, provide insight into the nanoscopic properties of their building blocks, and are macroscopic materials. In NC assemblies in general, interactions between the building blocks have to be considered, since a decrease of the distance between the NCs allows phenomena such as energy transfer to occur. Novel quantum dot-based aerogels with optical properties in the near-infrared (NIR) region are not characterized in terms of these important properties in the literature, while the structural complexity of these networks raises questions about the interactions within. Since knowledge about the physical phenomena is vital for applications, we here investigate the photoluminescence (PL) of PbS/CdS QD-based assemblies, namely drop-cast films and aerogels with steady-state measurements at cryogenic temperatures and time-resolved measurements at room temperature. We find multiple emissive in-gap states (IGS), and a correlation between the number of nearest QD neighbors, the distance between the QDs in the assemblies and the non-radiative recombination rate by linking the observations to different energy transfer phenomena.

2.
Sci Rep ; 14(1): 11904, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789603

ABSTRACT

Luminophore stained micro- and nanobeads made from organic polymers like polystyrene (PS) are broadly used in the life and material sciences as luminescent reporters, for bead-based assays, sensor arrays, printable barcodes, security inks, and the calibration of fluorescence microscopes and flow cytometers. Initially mostly prepared with organic dyes, meanwhile luminescent core/shell nanoparticles (NPs) like spherical semiconductor quantum dots (QDs) are increasingly employed for bead encoding. This is related to their narrower emission spectra, tuneability of emission color, broad wavelength excitability, and better photostability. However, correlations between particle architecture, morphology, and photoluminescence (PL) of the luminescent nanocrystals used for encoding and the optical properties of the NP-stained beads have been rarely explored. This encouraged us to perform a screening study on the incorporation of different types of luminescent core/shell semiconductor nanocrystals into polymer microparticles (PMPs) by a radical-induced polymerization reaction. Nanocrystals explored include CdSe/CdS QDs of varying CdS shell thickness, a CdSe/ZnS core/shell QD, CdSe/CdS quantum rods (QRs), and CdSe/CdS nanoplatelets (NPLs). Thereby, we focused on the applicability of these NPs for the polymerization synthesis approach used and quantified the preservation of the initial NP luminescence. The spectroscopic characterization of the resulting PMPs revealed the successful staining of the PMPs with luminescent CdSe/CdS QDs and CdSe/CdS NPLs. In contrast, usage of CdSe/CdS QRs and CdSe QDs with a ZnS shell did not yield luminescent PMPs. The results of this study provide new insights into structure-property relationships between NP stained PMPs and the initial luminescent NPs applied for staining and underline the importance of such studies for the performance optimization of NP-stained beads.

3.
Angew Chem Int Ed Engl ; 63(8): e202312473, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-37987465

ABSTRACT

Ruddlesden-Popper-type oxides exhibit remarkable chemical stability in comparison to perovskite oxides. However, they display lower oxygen permeability. We present an approach to overcome this trade-off by leveraging the anisotropic properties of Nd2 NiO4+δ . Its (a,b)-plane, having oxygen diffusion coefficient and surface exchange coefficient several orders of magnitude higher than its c-axis, can be aligned perpendicular to the gradient of oxygen partial pressure by a magnetic field (0.81 T). A stable and high oxygen flux of 1.40 mL min-1 cm-2 was achieved for at least 120 h at 1223 K by a textured asymmetric disk membrane with 1.0 mm thickness under the pure CO2 sweeping. Its excellent operational stability was also verified even at 1023 K in pure CO2 . These findings highlight the significant enhancement in oxygen permeation membrane performance achievable by adjusting the grain orientation. Consequently, Nd2 NiO4+δ emerges as a promising candidate for industrial applications in air separation, syngas production, and CO2 capture under harsh conditions.

4.
Nanoscale Adv ; 5(18): 5005-5014, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37705785

ABSTRACT

The assembly of nanocrystals (NCs) into three-dimensional network structures is a recently established strategy to produce macroscopic materials with nanoscopic properties. These networks can be formed by the controlled destabilization of NC colloids and subsequent supercritical drying to obtain NC-based aerogels. Even though this strategy has been used for many different semiconductor NCs, the emission of NC-based aerogels is limited to the ultraviolet and visible and no near-infrared (NIR) emitting NC-based aerogels have been investigated in literature until now. In the present work we have optimized a gelation route of NIR emitting PbS and PbS/CdS quantum dots (QDs) by means of a recently established gel formation method using trivalent ions to induce the network formation. Thereby, depending on the surface ligands and QDs used the resulting network structure is different. We propose, that the ligand affinity to the nanocrystal surface plays an essential role during network formation, which is supported by theoretical calculations. The optical properties were investigated with a focus on their steady-state and time resolved photoluminescence (PL). Unlike in PbS/CdS aerogels, the absorption of PbS aerogels and their PL shift strongly. For all aerogels the PL lifetimes are reduced in comparison to those of the building blocks with this reduction being especially pronounced in the PbS aerogels.

5.
Sci Rep ; 13(1): 11957, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488159

ABSTRACT

Surface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.g., biomolecules or targeting ligands is relevant. In this study, we explore the influence of QD encoding on the amount of carboxylic acid (COOH) surface FGs of 2 µm polystyrene microparticles (PSMPs). This is done for frequently employed oleic acid and oleylamine stabilized, luminescent core/shell CdSe QDs and two commonly used encoding procedures. This included QD addition during bead formation by a thermally induced polymerization reaction and a post synthetic swelling procedure. The accessible number of COOH groups on the surface of QD-encoded and pristine beads was quantified by two colorimetric assays, utilizing differently sized reporters and electrostatic and covalent interactions. The results were compared to the total number of FGs obtained by a conductometric titration and Fourier transform infrared spectroscopy (FTIR). In addition, a comparison of the impact of QD and dye encoding on the bead surface chemistry was performed. Our results demonstrate the influence of QD encoding and the QD-encoding strategy on the number of surface FG that is ascribed to an interaction of the QDs with the carboxylic acid groups on the bead surface. These findings are of considerable relevance for applications of nanoparticle-encoded beads and safe-by-design concepts for nanomaterials.

6.
Small ; 19(21): e2208108, 2023 May.
Article in English | MEDLINE | ID: mdl-36828791

ABSTRACT

Destabilization of a ligand-stabilized semiconductor nanocrystal solution with an oxidizing agent can lead to a macroscopic highly porous self-supporting nanocrystal network entitled hydrogel, with good accessibility to the surface. The previously reported charge carrier delocalization beyond a single nanocrystal building block in such gels can extend the charge carrier mobility and make a photocatalytic reaction more probable. The synthesis of ligand-stabilized nanocrystals with specific physicochemical properties is possible, thanks to the advances in colloid chemistry made in the last decades. Combining the properties of these nanocrystals with the advantages of nanocrystal-based hydrogels will lead to novel materials with optimized photocatalytic properties. This work demonstrates that CdSe quantum dots, CdS nanorods, and CdSe/CdS dot-in-rod-shaped nanorods as nanocrystal-based hydrogels can exhibit a much higher hydrogen production rate compared to their ligand-stabilized nanocrystal solutions. The gel synthesis through controlled destabilization by ligand oxidation preserves the high surface-to-volume ratio, ensures the accessible surface area even in hole-trapping solutions and facilitates photocatalytic hydrogen production without a co-catalyst. Especially with such self-supporting networks of nanocrystals, the problem of colloidal (in)stability in photocatalysis is circumvented. X-ray photoelectron spectroscopy and photoelectrochemical measurements reveal the advantageous properties of the 3D networks for application in photocatalytic hydrogen production.

7.
Small ; 19(10): e2206818, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36642817

ABSTRACT

In this work, the influence of two different types of cations on the gel formation and structure of mixed gel networks comprised of semiconductor (namely CdSe/CdS nanorods NR) and Au nanoparticles (NP) as well as on the respective monocomponent gels is investigated. Heteroassemblies built from colloidal building blocks are usually prepared by ligand removal or cross-linking, thus, both the surface chemistry and the destabilising agent play an essential role in the gelation process. Due to the diversity of the composition, morphology, and optical properties of the nanoparticles, a versatile route to fabricate functional heteroassemblies is of great demand. In the present work, the optics, morphology, and gelation mechanism of pure semiconductor and noble metal as well as their mixed nanoparticle gel networks are revealed. The influence of the gelation agents (bivalent and trivalent cations) on the structure-property correlation is elucidated by photoluminescence, X-ray photoelectron spectroscopy, and electron microscopy measurements. The selection of cations drastically influences the nano- and microstructure of the prepared gel network structures driven by the affinity of the cations to the ligands and the nanoparticle surface. This gelation technique provides a new platform to control the formation of porous assemblies based on semiconductor and metal nanoparticles.

8.
J Phys Chem A ; 126(51): 9605-9617, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36524393

ABSTRACT

The growing interest in multifunctional nano-objects based on polymers and magnetic nanoparticles for biomedical applications motivated us to develop a scale-up protocol to increase the yield of polymeric magnetic nanobeads while aiming at keeping the structural features at optimal conditions. The protocol was applied to two different types of magnetic ferrite nanoparticles: the Mn-ferrite selected for their properties as contrast agents in magnetic resonance imaging and iron oxide nanostar shaped nanoparticles chosen for their heat performance in magnetic hyperthermia. At the same time, some experiments on surface functionalization of nanobeads with amino modified polyethyelene glycol (PEG) molecules have provided further insight into the formation mechanism of magnetic nanobeads and the need to cross-link the polymer shell to improve the stability of the beads, making them more suitable for further manipulation and use. The present work summarizes the most important parameters required to be controlled for the upscaling of nanobead synthesis in a bench protocol and proposes an alternative cross-linking strategy based on prefunctionalization of the polymer prior to the nanobead formation as a key parameter to improve the nanobead structural stability in solutions at different pHs and during surface functionalization.


Subject(s)
Nanoparticles , Polymers , Polymers/chemistry , Ferric Compounds/chemistry , Nanoparticles/chemistry , Magnetic Resonance Imaging/methods
9.
Langmuir ; 38(37): 11149-11159, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36067458

ABSTRACT

Two-dimensional (2D) semiconductor nanoplatelets (NPLs) are strongly photoluminescent materials with interesting properties for optoelectronics. Especially their narrow photoluminescence paired with a high quantum yield is promising for light emission applications with high color purity. However, retaining these features in solid-state thin films together with an efficient encapsulation of the NPLs is a challenge, especially when trying to achieve high-quality films with a defined optical density and low surface roughness. Here, we show photoluminescent polymer-encapsulated inorganic-organic nanocomposite coatings of 2D CdSe/CdS NPLs in poly(diallyldimethylammonium chloride) (PDDA) and poly(ethylenimine) (PEI), which are prepared by sequential layer-by-layer (LbL) deposition. The electrostatic interaction between the positively charged polyelectrolytes and aqueous phase-transferred NPLs with negatively charged surface ligands is used as a driving force to achieve self-assembled nanocomposite coatings with a well-controlled layer thickness and surface roughness. Increasing the repulsive forces between the NPLs by increasing the pH value of the dispersion leads to the formation of nanocomposites with all NPLs arranging flat on the substrate, while the surface roughness of the 165 nm (50 bilayers) thick coating decreases to Ra = 14 nm. The photoluminescence properties of the nanocomposites are determined by the atomic layer thickness of the NPLs and the 11-mercaptoundecanoic acid ligand used for their phase transfer. Both the full width at half-maximum (20.5 nm) and the position (548 nm) of the nanocomposite photoluminescence are retained in comparison to the colloidal CdSe/CdS NPLs in aqueous dispersion, while the measured photoluminescence quantum yield of 5% is competitive to state-of-the-art nanomaterial coatings. Our approach yields stable polymer-encapsulated CdSe/CdS NPLs in smooth coatings with controllable film thickness, rendering the LbL deposition technique a powerful tool for the fabrication of solid-state photoluminescent nanocomposites.

10.
Sci Rep ; 12(1): 12061, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35835808

ABSTRACT

Luminescence-encoded microbeads are important tools for many applications in the life and material sciences that utilize luminescence detection as well as multiplexing and barcoding strategies. The preparation of such beads often involves the staining of premanufactured beads with molecular luminophores using simple swelling procedures or surface functionalization with layer-by-layer (LbL) techniques. Alternatively, these luminophores are sterically incorporated during the polymerization reaction yielding the polymer beads. The favorable optical properties of semiconductor quantum dots (QDs), which present broadly excitable, size-tunable, narrow emission bands and low photobleaching sensitivity, triggered the preparation of beads stained with QDs. However, the colloidal nature and the surface chemistry of these QDs, which largely controls their luminescence properties, introduce new challenges to bead encoding that have been barely systematically assessed. To establish a straightforward approach for the bead encoding with QDs with minimized loss in luminescence, we systematically assessed the incorporation of oleic acid/oleylamine-stabilized CdSe/CdS-core/shell-QDs into 0.5-2.5 µm-sized polystyrene (PS) microspheres by a simple dispersion polymerization synthesis that was first optimized with the organic dye Nile Red. Parameters addressed for the preparation of luminophore-encoded beads include the use of a polymer-compatible ligand such as benzyldimethyloctadecylammonium chloride (OBDAC) for the QDs, and crosslinking to prevent luminophore leakage. The physico-chemical and optical properties of the resulting beads were investigated with electron microscopy, dynamic light scattering, optical spectroscopy, and fluorescence microscopy. Particle size distribution, fluorescence quantum yield of the encapsulated QDs, and QD leaking stability were used as measures for bead quality. The derived optimized bead encoding procedure enables the reproducible preparation of bright PS microbeads encoded with organic dyes as well as with CdSe/CdS-QDs. Although these beads show a reduced photoluminescence quantum yield compared to the initially very strongly luminescent QDs, with values of about 35%, their photoluminescence quantum yield is nevertheless still moderate.


Subject(s)
Quantum Dots , Coloring Agents , Luminescence , Microspheres , Polymerization , Polystyrenes/chemistry , Quantum Dots/chemistry , Semiconductors
11.
J Chem Phys ; 156(23): 234701, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35732518

ABSTRACT

The assembly of CdSe/CdS dot/rod nanocrystals (NCs) with variable length of ZnS tips into aerogel networks is presented. To this end, a partial region selective cation exchange procedure is performed replacing Cd by Zn starting at the NC tip. The produced aerogel networks are investigated structurally and optically. The networks of tip-to-tip connected NCs have an intricate band structure with holes confined to the CdSe cores while electrons are delocalized within the CdS also within connected building blocks. However, the ZnS tips act as a barrier of variable length and strength between the NC building blocks partly confining the electrons. This results in NC based aerogel networks with tunable strength of coupling between building blocks.

12.
J Phys Chem C Nanomater Interfaces ; 126(9): 4563-4576, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35299818

ABSTRACT

Boron-nitrogen substitutions in polycyclic aromatic hydrocarbons (PAHs) have a strong impact on the optical properties of the molecules due to a significantly more heterogeneous electron distribution. However, besides these single-molecule properties, the observed optical properties of PAHs critically depend on the degree of intermolecular interactions such as π-π-stacking, dipolar interactions, or the formation of dimers in the excited state. Pyrene is the most prominent example showing the latter as it exhibits a broadened and strongly bathochromically shifted emission band at high concentrations in solution compared to the respective monomers. In the solid state, the impact of intermolecular interactions is even higher as it determines the crystal packing crucially. In this work, a thiophene-flanked BN-pyrene (BNP) was synthesized and compared with its all-carbon analogue (CCP) in solution and in the solid state by means of crystallography, NMR spectroscopy, UV-vis spectroscopy, and photoluminescence (PL) spectroscopy. In solution, PL spectroscopy revealed the solvent-dependent presence of excimers of CCP at high concentrations. In contrast, no excimers were found in BNP. Clear differences were also observed in the single-crystal packing motifs. While CCP revealed overlapped pyrene planes with centroid distances in the range of classical π-stacking interactions, the BNP scaffolds were displaced and significantly more spatially separated.

13.
Phys Chem Chem Phys ; 24(14): 8519-8528, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35348140

ABSTRACT

Semiconductor nanoheterostructures (NHSs) are being increasingly used for the photocatalytic conversion of solar energy in which photo-induced charge separation is an essential step and hence it is necessary to understand the effect of various factors such as size, shape, and composition on the charge transfer dynamics. Ultrafast transient absorption spectroscopy is used to investigate the nature and dynamics of photo-induced charge transfer processes in ZnSe-CdS NHSs of different morphologies such as nanospheres (NSs), nanorods (NRs), and nanoplates (NPs). It demonstrates the fast separation of charge carriers and localization of both charges in adjacent semiconductors, resulting in the formation of a charge-separated (CS) state. The lifetime of the charge-separated state follows the order of NSs < NPs < NRs, emphasizing the effect of morphology on the enhancement of photo-induced charge separation and suppression of backward recombination. The separated charge carriers have been utilized in visible light driven hydrogen production and the hydrogen generation activity follows the same order as that for the lifetime of the CS state, underlining the role of charge separation efficiency. Therefore, the variation of the morphology of NHSs plays a significant role in their charge carrier dynamics and hence the photocatalytic hydrogen production activity.

14.
Adv Sci (Weinh) ; 9(11): e2105544, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35132807

ABSTRACT

Room-temperature sodium-sulfur (RT Na-S) batteries are arousing great interest in recent years. Their practical applications, however, are hindered by several intrinsic problems, such as the sluggish kinetic, shuttle effect, and the incomplete conversion of sodium polysulfides (NaPSs). Here a sulfur host material that is based on tungsten nanoparticles embedded in nitrogen-doped graphene is reported. The incorporation of tungsten nanoparticles significantly accelerates the polysulfides conversion (especially the reduction of Na2 S4 to Na2 S, which contributes to 75% of the full capacity) and completely suppresses the shuttle effect, en route to a fully reversible reaction of NaPSs. With a host weight ratio of only 9.1% (about 3-6 times lower than that in recent reports), the cathode shows unprecedented electrochemical performances even at high sulfur mass loadings. The experimental findings, which are corroborated by the first-principles calculations, highlight the so far unexplored role of tungsten nanoparticles in sulfur hosts, thus pointing to a viable route toward stable Na-S batteries at room temperatures.

15.
Macromol Rapid Commun ; 43(7): e2100794, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35085414

ABSTRACT

Preparation of low density monolithic and free-standing organic-inorganic hybrid aerogels of various properties is demonstrated using green chemistry from a biosafe natural source (flaxseed mucilage) and freeze-casting and subsequent freeze drying. Bio-aerogels, luminescent aerogels, and magneto-responsive aerogels are obtained by combination of the flaxseed mucilage with different types of nanoparticles. Moreover, the aerogels are investigated as possible drug release systems using curcumin as a model. Various characterization techniques like thermogravimetric analysis, nitrogen physisorption, electron microscopy, UV/Vis absorption, and emission spectroscopy, bulk density, and mechanical measurements, as well as in vitro release profile measurements, are employed to investigate the obtained materials. The flaxseed-inspired organic-inorganic hybrid aerogels exhibit ultra-low densities as low as 5.6 mg cm-3 for 0.5% (w/v) the mucilage polymer, a specific surface area of 4 to 20 m2 g-1 , high oil absorption capacity (23 g g-1 ), and prominent compressibility. The natural biopolymer technique leads to low cost and biocompatible functional lightweight materials with tunable properties (physicochemical and mechanical) and significant potential for applications as supporting or stimuli responsive materials, carriers, reactors, microwave- and electromagnetic radiation protective (absorbing)-materials, as well as in drug delivery and oil absorption.


Subject(s)
Flax , Nanoparticles , Drug Liberation , Gels/chemistry , Porosity
16.
Chemphyschem ; 23(2): e202100755, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34735043

ABSTRACT

Employing nanocrystals (NCs) as building blocks of porous aerogel network structures allows the conversion of NC materials into macroscopic solid structures while conserving their unique nanoscopic properties. Understanding the interplay of the network formation and its influence on these properties like size-dependent emission is a key to apply techniques for the fabrication of novel nanocrystal aerogels. In this work, CdSe/CdS dot/rod NCs possessing two different CdSe core sizes were synthesized and converted into porous aerogel network structures. Temperature-dependent steady-state and time-resolved photoluminescence measurements were performed to expand the understanding of the optical and electronic properties of these network structures generated from these two different building blocks and correlate their optical with the structural properties. These investigations reveal the influence of network formation and aerogel production on the network-forming nanocrystals. Based on the two investigated NC building blocks and their aerogel networks, mixed network structures with various ratios of the two building blocks were produced and likewise optically characterized. Since the different building blocks show diverse optical response, this technique presents a straightforward way to color-tune the resulting networks simply by choosing the building block ratio in connection with their quantum yield.

17.
J Phys Chem C Nanomater Interfaces ; 125(48): 26635-26644, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34917227

ABSTRACT

The presented work shows a synthesis route to obtain nanoparticles of the hexagonal α-NiS phase and core-shell particles where the same material is grown onto previously prepared Au seeds. In the bulk, this nickel sulfide phase is known to exhibit a metal-insulator type phase transition (MIT) at 265 K which drastically alters its electrical conductivity. Since the produced nanoparticles show a localized surface plasmon resonance (LSPR) in the visible range of the electromagnetic spectrum, the development of their optical properties depending on the temperature is investigated. This is the first time an LSPR of colloidal nanoparticles is monitored regarding such a transition. The results of UV-vis absorbance measurements show that the LSPR of the particles can be strongly and reversibly tuned by varying the temperature. It can be switched off by cooling the nanoparticles and switched on again by reheating them above the transition temperature. Additional to the phase transition, the temperature-dependent magnetic susceptibility of α-NiS and Au-NiS nanoparticles suggests the presence of different amounts of uncompensated magnetic moments in these compounds that possibly affect the optical properties and may cause the observed quantitative differences in the LSPR response of these materials.

18.
ACS Appl Mater Interfaces ; 13(48): 57774-57785, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34813701

ABSTRACT

Noble-metal-based electrocatalysts usually contain small nanoparticle building blocks to ensure a high specific surface area as the scene for the surface processes. Here, we show that relatively large noble-metal nanorods are also promising candidates to build up functional macrostructures with prominent electrocatalytic activity. After optimizing and upscaling the syntheses of gold nanorods and gold bipyramid-templated silver nanorods, cryoaerogels are fabricated on a conductive substrate via flash freezing and subsequent freeze drying. The versatile cryoaerogelation technique allows the formation of macrostructures with dendritic, open-pore structure facilitating the increase of the accessible nanorod surfaces. It is demonstrated via electrochemical oxidation and stripping test experiments that noble-metal surface sites are electrochemically active in redox reactions. Furthermore, gold nanorod cryoaerogels offer a platform for redox sensing, ethanol oxidation reaction, as well as glucose sensing. Compared to their simply drop-cast and dried counterparts, the noble-metal nanorod cryoaerogels offer enhanced activity due to the open porosity of the fabricated nanostructure while maintaining structural stability.

19.
J Org Chem ; 86(21): 14333-14355, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34581564

ABSTRACT

Minimalistic 2-(oxazolinyl)-phenols substituted with different electron-donating and -withdrawing groups as well as 1,2,5-chalcogenadiazole-annulated derivatives thereof were synthesized and investigated in regard to their emission behavior in solution as well as in the solid state. Depending on the nature of the incorporated substituent and its position, emission efficiencies were increased or diminished, resulting in AIE or ACQ characteristics. Single-crystal analysis revealed J- and H-type packing motifs and a so-far undescribed isolation of ESIPT-based fluorophores in the keto form.


Subject(s)
Phenols , Protons , Electrons , Fluorescent Dyes
20.
ACS Nano ; 15(9): 15047-15056, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34529415

ABSTRACT

Lithium-sulfur (Li-S) batteries have attracted widespread attention due to their high theoretical energy density. However, their practical application is still hindered by the shuttle effect and the sluggish conversion of lithium polysulfides (LiPSs). Herein, monodisperse molybdenum (Mo) nanoparticles embedded onto nitrogen-doped graphene (Mo@N-G) were developed and used as a highly efficient electrocatalyst to enhance LiPS conversion. The weight ratio of the electrocatalyst in the catalyst/sulfur cathode is only 9%. The unfilled d orbitals of oxidized Mo can attract the electrons of LiPS anions and form Mo-S bonds during the electrochemical process, thus facilitating fast conversion of LiPSs. Li-S batteries based on the Mo@N-G/S cathode can exhibit excellent rate performance, large capacity, and superior cycling stability. Moreover, Mo@N-G also plays an important role in room-temperature quasi-solid-state Li-S batteries. These interesting findings suggest the great potential of Mo nanoparticles in building high-performance Li-S batteries.

SELECTION OF CITATIONS
SEARCH DETAIL