Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 950: 175137, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39094642

ABSTRACT

Cross-border flow of untreated sewage from Mexico into the USA via the Tijuana River is public health issue with negative consequences for coastal communities. Here we evaluate the potential application of fluorescence-based, submersible tryptophan-like (TRP) and humic-like (CDOM) fluorescence sensors for real-time tracking of wastewater pollution in an estuarine environment. Sonde fluorescence measurements were compared with benchtop fluorescence, fecal indicator bacteria (FIB) concentrations, and real-time specific conductivity measurements in the Tijuana River Estuary during dry and wet weather conditions, and with and without cross-border flow. TRP and CDOM fluorescence concentrations were low during times without cross-border flow and two-three orders of magnitude higher during storm events and after cross-border sewage flow events. Major deterioration in water quality, including hypoxic conditions, was observed after consistent, long-term cross-border sewage flow. Real-time TRP and CDOM fluorescence concentrations had a significant linear relationship with fecal indicator bacteria (FIB) concentrations during dry weather periods with cross-border flow (p < 0.001) but were poorly correlated during stormflow and during less polluted periods with no cross-border flow. TRP and CDOM fluorescence acquired on discrete samples using a benchtop fluorometer correlated significantly (p < 0.001) with FIB concentrations under all cross-border flow conditions. Based on relationships between benchtop TRP fluorescence and percent wastewater, the greatest amount of untreated wastewater in the estuary's surface layer during cross-border flow events was estimated at >80 % and occurred during neap tides, when concentrated, sewage-laden freshwater flowed over dense saline seawater due to stratification and lack of mixing in the estuary. These results are important because exposure to untreated sewage poses severe health risks for residents and visitors to adjacent coastal areas. While benchtop fluorescence was more effective for estimating the degree of wastewater pollution, submersible TRP and CDOM sensors provided a real-time alert of sewage contamination, which can be utilized in other sewage impacted estuarine environments.


Subject(s)
Environmental Monitoring , Estuaries , Rivers , Sewage , Sewage/analysis , Environmental Monitoring/methods , Mexico , Rivers/microbiology , Rivers/chemistry , United States , Fluorescence
2.
Sci Rep ; 14(1): 14067, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890330

ABSTRACT

Prioritizing watershed management interventions relies on delineating homogeneous precipitation regions. In this study, we identify these regions in the Brazilian Legal Amazon based on the magnitude of Sen's Slope trends using annual precipitation data from September to August, employing the Google Earth Engine platform. Utilizing the silhouette method, we determine four distinct clusters representing zones of homogeneous precipitation patterns. Cluster 0 exhibits a significant median increase in precipitation of 3.20 mm year-1 over the period from 1981 to 2020. Cluster 1 shows a notable increase of 8.13 mm year-1, while Clusters 2 and 3 demonstrate reductions in precipitation of - 1.61 mm year-1 and - 3.87 mm year-1, respectively, all statistically significant. Notably, the region known as the arc of deforestation falls within Cluster 2, indicating a concerning trend of reduced precipitation. Additionally, our analysis reveals significant correlations between Sea Surface Temperature (SST) in various oceanic regions and precipitation patterns over the Brazilian Legal Amazon. Particularly noteworthy is the strong positive correlation with SST in the South Atlantic, while negative correlations are observed with SST in the South Pacific and North Atlantic. These findings provide valuable insights for enhancing climate adaptation strategies in the Brazilian Legal Amazon region.

3.
Sci Total Environ ; 896: 166323, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37595919

ABSTRACT

Land use and cover change (LUCC) in Brazil encompass a complex interplay of diverse factors across different biomes. Understanding these dynamics is crucial for informed decision-making and sustainable land management. In this study, we comprehensively analyzed LUCC patterns and drivers using 30 m resolution MapBiomas Collection 6.0 data (1985-2020). By mapping deforestation of primary and secondary natural vegetation, natural vegetation regeneration, and transitions between pasture, soybean, agriculture, and irrigation, we shed light on the intricate nature of LUCC in Brazil. Our findings highlight significant and increasing trends of deforestation in primary vegetation in the country. Simultaneously, the Atlantic Forest, Caatinga, Pampa, and other regions of the Cerrado have experienced intensification processes. Notably, the pasture area in Brazil reached its peak in 2006 and has since witnessed a gradual replacement by soybean and other crops. While pasture-driven deforestation persists in most biomes, the net pasture area has only increased in the Amazon and Pantanal, decreasing in other biomes due to the conversion of pasturelands to intensive cropping in other regions. Our analysis further reveals that primary and secondary vegetation deforestation accounts for a substantial portion of overall forest loss, with 72 % and 17 %, respectively. Of the cleared areas, 48 % were in pasture, 9 % in soybean cultivation, and 16 % in other agricultural uses in 2020. Additionally, we observed a lower rate of deforestation in the Atlantic Forest, a biome that has been significantly influenced by anthropogenic activities since 1986. This holistic quantification of LUCC dynamics provides a solid foundation for understanding the impacts of these changes on local to continental-scale land-atmosphere interactions. By unraveling the complex nature of LUCC in Brazil, this study aims to contribute to the development of effective strategies for sustainable land management and decision-making processes.


Subject(s)
Ecosystem , Forests , Brazil , Agriculture , Anthropogenic Effects , Glycine max
4.
Sci Total Environ ; 808: 152134, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34864033

ABSTRACT

Major land use and land cover changes (LULCC) have taken place in Brazil, including large scale conversion of forest to agriculture. LULCC alters surface-atmosphere interactions, changing the timing and magnitude of energy fluxes, impacting the partitioning of available energy, and therefore the climate and water balance. The objective of this work was to provide a detailed analysis of how LULCC has affected surface-atmosphere interactions over the Brazilian territory, particularly focusing on impacts on precipitation (P), evapotranspiration (ET), and atmospheric humidity (h). Our systematic review yielded 61 studies, with the Amazon being the most studied biome followed by the Cerrado. P was the most analyzed variable, followed by ET. Few papers analyzed LULCC impacts on h. For the Amazon biome, decreasing dry season P and in annual ET were reported. In the Cerrado biome, decreasing P in the wet and dry seasons and decreasing dry season ET were the most common result. For the Atlantic Forest biome, increasing annual P and increasing wet season ET, likely due to reforestation, were reported. Few studies documented LULCC impacts on surface-atmosphere interactions over the Brazilian biomes Caatinga, Pantanal and Pampa. Therefore, new research is needed to assess impacts of LULCC on these biomes, including assessments of atmospheric moisture recycling, and interactions of LULCC with global climate and climate extremes including droughts.


Subject(s)
Ecosystem , Forests , Agriculture , Atmosphere , Brazil
5.
Water (Basel) ; 11(5): 1-1024, 2019.
Article in English | MEDLINE | ID: mdl-31583124

ABSTRACT

Urbanization can increase sheet, rill, gully, and channel erosion. We quantified the sediment budget of the Los Laureles Canyon watershed (LLCW), which is a mixed rural-urbanizing catchment in Northwestern Mexico, using the AnnAGNPS model and field measurements of channel geometry. The model was calibrated with five years of observed runoff and sediment loads and used to evaluate sediment reduction under a mitigation scenario involving paving roads in hotspots of erosion. Calibrated runoff and sediment load had a mean-percent-bias of 28.4 and - 8.1, and root-mean-square errors of 85% and 41% of the mean, respectively. Suspended sediment concentration (SSC) collected at different locations during one storm-event correlated with modeled SSC at those locations, which suggests that the model represented spatial variation in sediment production. Simulated gully erosion represents 16%-37% of hillslope sediment production, and 50% of the hillslope sediment load is produced by only 23% of the watershed area. The model identifies priority locations for sediment control measures, and can be used to identify tradeoffs between sediment control and runoff production. Paving roads in priority areas would reduce total sediment yield by 30%, but may increase peak discharge moderately (1.6%-21%) at the outlet.

6.
Earth Surf Process Landf ; 43(7): 1465-1477, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-30245539

ABSTRACT

Urbanization can lead to accelerated stream channel erosion, especially in areas experiencing rapid population growth, unregulated urban development on erodible soils, and variable enforcement of environmental regulations. A combination of field surveys and Structure-from-Motion (SfM) photogrammetry techniques was used to document spatial patterns in stream channel geometry in a rapidly urbanizing watershed, Los Laureles Canyon (LLCW), in Tijuana, Mexico. Ground-based SfM photogrammetry was used to map channel dimensions with 1 to 2 cm vertical mean error for four stream reaches (100-300 m long) that were highly variable and difficult to survey with a differential GPS. Regional channel geometry curves for LLCW had statistically larger slopes and intercepts compared with regional curves developed for comparable, undisturbed reference channels. Cross-sectional areas of channels downstream of hardpoints, such as concrete reaches or culverts, were up to 64 times greater than reference channels, with enlargement persisting, in some cases, up to 230 m downstream. Percentage impervious cover was not a good predictor of channel enlargement. Proximity to upstream hardpoint, and lack of riparian and bank vegetation paired with highly erodible bed and bank materials may account for the instability of the highly enlarged and unstable cross-sections. Channel erosion due to urbanization accounts for approximately 25-40% of the total sediment budget for the watershed, and channel erosion downstream of hardpoints accounts for one-third of all channel erosion. Channels downstream of hardpoints should be stabilized to prevent increased inputs of sediment to the Tijuana Estuary and local hazards near the structures, especially in areas with urban settlements near the stream channel.

7.
Ecol Appl ; 18(1): 31-48, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18372554

ABSTRACT

The rate and extent of deforestation determine the timing and magnitude of disturbance to both terrestrial and aquatic ecosystems. Rapid change can lead to transient impacts to hydrology and biogeochemistry, while complete and permanent conversion to other land uses can lead to chronic changes. A large population of watershed boundaries (N=4788) and a time series of Landsat TM imagery (1975-1999) in the southwestern Amazon Basin showed that even small watersheds (2.5-15 km2) were deforested relatively slowly over 7-21 years. Less than 1% of all small watersheds were more than 50% cleared in a single year, and clearing rates averaged 5.6%/yr during active clearing. A large proportion (26%) of the small watersheds had a cumulative deforestation extent of more than 75%. The cumulative deforestation extent was highly spatially autocorrelated up to a 100-150 km lag due to the geometry of the agricultural zone and road network, so watersheds as large as approximately 40000 km2 were more than 50% deforested by 1999. The rate of deforestation had minimal spatial autocorrelation beyond a lag of approximately 30 km, and the mean rate decreased rapidly with increasing area. Approximately 85% of the cleared area remained in pasture, so deforestation in watersheds of Rondônia was a relatively slow, permanent, and complete transition to pasture, rather than a rapid, transient, and partial cutting with regrowth. Given the observed landcover transitions, the regional stream biogeochemical response is likely to resemble the chronic changes observed in streams draining established pastures, rather than a temporary pulse from slash-and-burn.


Subject(s)
Ecology , Trees , Brazil
SELECTION OF CITATIONS
SEARCH DETAIL