Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Article in English | MEDLINE | ID: mdl-39218359

ABSTRACT

BACKGROUND: Cytotoxic T-lymphocyte antigen-4 (CTLA-4) insufficiency causes a primary immune regulatory disorder characterised by lymphoproliferation, dysgammaglobulinaemia, and multi-organ autoimmunity including cytopenias and colitis. OBJECTIVE: To examine the outcome of HSCT for CTLA-4 insufficiency and study the impact of pre-HSCT CTLA-4-Ig therapy and pre-HSCT immune dysregulation on survival and immunological outcome. METHODS: Retrospective study of HSCT for CTLA-4 insufficiency and 2q33.2-3 deletion from the Inborn Errors Working Party of EBMT. Primary endpoints were overall survival (OS) and disease- and chronic GvHD-free survival (DFS). Secondary endpoint was immunological outcome assessed by Immune Dysregulation Disease Activity (IDDA) score. RESULTS: Forty patients were included over a 25-year period. Pre-HSCT, 60% received CTLA-4-Ig and IDDA was 23.3 (3.9-84.0). Median age at HSCT was 14.2 (1.3-56.0) years. Patients received PBSC (58%) or marrow (43%) from MUD (75%), MMUD (12.5%) or MFD (12.5%). Median follow-up was 3 years (0.6-15 years) and 3-year OS was 76.7% (58-87%) and DFS was 74.4% (54.9-86.0%). At latest follow-up, 28/30 surviving patients are in disease-free remission with median IDDA reduction of 16. Probability of OS and DFS was greater in patients with lower disease activity pre-HSCT (IDDA<23, p=0.002 and p=0.006, respectively). CTLA-4-Ig receipt did not influence OS or DFS. Cause of death was transplant-related in 7/8 patients. CONCLUSION: This is the largest retrospective study of HSCT for CTLA-4 insufficiency to date. HSCT is an effective therapy to prevent ongoing disease progression and morbidity, with improving survival rates over time and in patients with lower pre-HSCT disease activity.

2.
J Clin Immunol ; 43(8): 1827-1839, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37454339

ABSTRACT

PURPOSE: X-linked agammaglobulinemia (XLA) is an inborn error of immunity caused by variants in Bruton's tyrosine kinase (BTK). XLA patients require lifelong immunoglobulin replacement therapy (IgRT). Only few XLA patients are indicated for allogeneic hematopoietic cell transplantation (HCT) because of severe complications. Accordingly, the published transplantation experience in XLA is minimal. We aimed to collect clinical data of XLA patients who received HCT in an international framework and to establish appropriate transplantation criteria and methods for XLA patients. METHODS: XLA patients were recruited through a questionnaire and a literature review. The data are on patient characteristics and transplantation methods and outcomes. RESULTS: In this study, twenty-two XLA patients who underwent HCT were recruited. The indication for HCT was recurrent or life-threatening infection in sixteen patients, malignancy in three, and other factors in three. A myeloablative conditioning, reduced toxicity myeloablative conditioning (RT-MAC), and reduced intensity conditioning (RIC) were selected in four, ten, and eight patients, respectively. Engraftment was achieved in 21 patients (95%). In all patients, 2-year overall survival (OS) and event-free survival (EFS) were 86% and 77%, respectively. In patients who received RT-MAC or RIC using treosulfan, busulfan, or melphalan, 2-year OS and EFS were 82% and 71%, respectively. Finally, twenty-one patients (95%) obtained complete or stable high-level mixed chimerism (50-95%), and the 1-year discontinuation rate of IgRT was 89%. CONCLUSION: Based on the concept in which IgRT is the standard treatment for XLA, HCT may be an effective and safe alternative treatment option for XLA patients, and IgRT can be discontinued following transplantation. It is ideal to perform HCT in XLA patients for whom transplantation is indicated before they develop organ damage.


Subject(s)
Agammaglobulinemia , Genetic Diseases, X-Linked , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Hematopoietic Stem Cell Transplantation/methods , Agammaglobulinemia/diagnosis , Agammaglobulinemia/therapy , Agammaglobulinemia/etiology , Genetic Diseases, X-Linked/therapy , Genetic Diseases, X-Linked/etiology , Melphalan , Transplantation Conditioning/methods , Graft vs Host Disease/etiology
3.
Transplantation ; 107(10): 2179-2189, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37143202

ABSTRACT

BACKGROUND: The association between interleukin-1ß (IL-1ß) concentrations during ex vivo lung perfusion (EVLP) with donor organ quality and post-lung transplant outcome has been demonstrated in several studies. The mechanism underlying IL-1ß-mediated donor lung injury was investigated using a paired single-lung EVLP model. METHODS: Human lung pairs were dissected into individual lungs and perfused on identical separate EVLP circuits, with one lung from each pair receiving a bolus of IL-1ß. Fluorescently labeled human neutrophils isolated from a healthy volunteer were infused into both circuits and quantified in perfusate at regular timepoints. Perfusates and tissues were subsequently analyzed, with perfusates also used in functional assays. RESULTS: Neutrophil numbers were significantly lower in perfusate samples collected from the IL-1ß-stimulated lungs consistent with increased neutrophil adhesion ( P = 0.042). Stimulated lungs gained significantly more weight than controls ( P = 0.046), which correlated with soluble intercellular adhesion molecule-1 (R 2 = 0.71, P = 0.0043) and von-Willebrand factor (R 2 = 0.39, P = 0.040) in perfusate. RNA expression patterns for inflammatory genes were differentially regulated via IL-1ß. Blockade of IL-1ß significantly reduced neutrophil adhesion in vitro ( P = 0.025). CONCLUSION: These data illustrate the proinflammatory functions of IL-1ß in the context of EVLP, suggesting this pathway may be susceptible to therapeutic modulation before transplantation.


Subject(s)
Lung Transplantation , Humans , Perfusion/adverse effects , Interleukin-1beta/pharmacology , Interleukin-1beta/metabolism , Lung Transplantation/adverse effects , Lung/metabolism , Inflammation
5.
Eur J Immunol ; 53(11): e2249816, 2023 11.
Article in English | MEDLINE | ID: mdl-36303448

ABSTRACT

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. This article provides protocols with top ticks and pitfalls for preparation and successful generation of mouse and human DC from different cellular sources, such as murine BM and HoxB8 cells, as well as human CD34+ cells from cord blood, BM, and peripheral blood or peripheral blood monocytes. We describe murine cDC1, cDC2, and pDC generation with Flt3L and the generation of BM-derived DC with GM-CSF. Protocols for human DC generation focus on CD34+ cell culture on OP9 cell layers for cDC1, cDC2, cDC3, and pDC subset generation and DC generation from peripheral blood monocytes (MoDC). Additional protocols include enrichment of murine DC subsets, CRISPR/Cas9 editing, and clinical grade human DC generation. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.


Subject(s)
Dendritic Cells , Monocytes , Animals , Mice , Humans , Antigens, CD34 , Phenotype , Cell Differentiation
6.
Blood Adv ; 7(10): 2171-2176, 2023 05 23.
Article in English | MEDLINE | ID: mdl-36112425

ABSTRACT

Most children with high-risk Langerhans cell histiocytosis (LCH) have BRAFV600E mutation. BRAFV600E alleles are detectable in myeloid mononuclear cells at diagnosis but it is not known if the cellular distribution of mutation evolves over time. Here, the profiles of 16 patients with high-risk disease were analyzed. Two received conventional salvage chemotherapy, 4 patients on inhibitors were tracked at intervals of 3 to 6 years, and 10 patients, also given inhibitors, were analyzed more than 2 years after diagnosis. In contrast to the patients responding to salvage chemotherapy who completely cleared BRAFV600E within 6 months, children who received inhibitors maintained high BRAFV600E alleles in their blood. At diagnosis, mutation was detected predominantly in monocytes and myeloid dendritic cells. With time, mutation switched to the T-cell compartment, which accounted for most of the mutational burden in peripheral blood mononuclear cells, more than 2 years from diagnosis (median, 85.4%; range, 44.5%-100%). The highest level of mutation occurred in naïve CD4+ T cells (median, 51.2%; range, 3.8%-93.5%). This study reveals an unexpected lineage switch of BRAFV600E mutation in high-risk LCH, which may influence monitoring strategies for the potential withdrawal of inhibitor treatment and has new implications for the pathogenesis of neurodegeneration, which occurred in 4 patients.


Subject(s)
Dendritic Cells , Histiocytosis, Langerhans-Cell , Monocytes , T-Lymphocytes , Humans , Dendritic Cells/pathology , Histiocytosis, Langerhans-Cell/genetics , Histiocytosis, Langerhans-Cell/pathology , Leukocytes, Mononuclear , Monocytes/pathology , Mutation , Male , Female , Infant , Child, Preschool , T-Lymphocytes/pathology , Cell Lineage/genetics
7.
J Exp Med ; 220(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36515678

ABSTRACT

Patients with inherited CARMIL2 or CD28 deficiency have defective T cell CD28 signaling, but their immunological and clinical phenotypes remain largely unknown. We show that only one of three CARMIL2 isoforms is produced and functional across leukocyte subsets. Tested mutant CARMIL2 alleles from 89 patients and 52 families impair canonical NF-κB but not AP-1 and NFAT activation in T cells stimulated via CD28. Like CD28-deficient patients, CARMIL2-deficient patients display recalcitrant warts and low blood counts of CD4+ and CD8+ memory T cells and CD4+ TREGs. Unlike CD28-deficient patients, they have low counts of NK cells and memory B cells, and their antibody responses are weak. CARMIL2 deficiency is fully penetrant by the age of 10 yr and is characterized by numerous infections, EBV+ smooth muscle tumors, and mucocutaneous inflammation, including inflammatory bowel disease. Patients with somatic reversions of a mutant allele in CD4+ T cells have milder phenotypes. Our study suggests that CARMIL2 governs immunological pathways beyond CD28.


Subject(s)
CD28 Antigens , Microfilament Proteins , Humans , CD28 Antigens/metabolism , Microfilament Proteins/genetics , Mutation/genetics , Phenotype , CD4-Positive T-Lymphocytes
9.
Blood ; 140(17): 1875-1890, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35839448

ABSTRACT

The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukemia, resulting in poor clinical outcomes caused by resistance to chemotherapies and immunotherapies. In this study, the myeloid relapses shared oncogene fusion breakpoints with their matched lymphoid presentations and originated from various differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programs, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing, or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4+ cell models, indicating that lineage switching in MLL/AF4 leukemia is driven and maintained by disrupted epigenetic regulation.


Subject(s)
Myeloid-Lymphoid Leukemia Protein , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Epigenesis, Genetic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Genes, Regulator , Chromatin
11.
Blood ; 140(14): 1635-1649, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35344580

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (HSCT) is the gold standard curative therapy for infants and children with many inborn errors of immunity (IEI), but adolescents and adults with IEI are rarely referred for transplant. Lack of published HSCT outcome data outside small, single-center studies and perceived high risk of transplant-related mortality have delayed the adoption of HSCT for IEI patients presenting or developing significant organ damage later in life. This large retrospective, multicenter HSCT outcome study reports on 329 IEI patients (age range, 15-62.5 years at HSCT). Patients underwent first HSCT between 2000 and 2019. Primary endpoints were overall survival (OS) and event-free survival (EFS). We also evaluated the influence of IEI-subgroup and IEI-specific risk factors at HSCT, including infections, bronchiectasis, colitis, malignancy, inflammatory lung disease, splenectomy, hepatic dysfunction, and systemic immunosuppression. At a median follow-up of 44.3 months, the estimated OS at 1 and 5 years post-HSCT for all patients was 78% and 71%, and EFS was 65% and 62%, respectively, with low rates of severe acute (8%) or extensive chronic (7%) graft-versus-host disease. On univariate analysis, OS and EFS were inferior in patients with primary antibody deficiency, bronchiectasis, prior splenectomy, hepatic comorbidity, and higher hematopoietic cell transplant comorbidity index scores. On multivariable analysis, EFS was inferior in those with a higher number of IEI-associated complications. Neither age nor donor had a significant effect on OS or EFS. We have identified age-independent risk factors for adverse outcome, providing much needed evidence to identify which patients are most likely to benefit from HSCT.


Subject(s)
Bronchiectasis , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Adolescent , Adult , Bronchiectasis/etiology , Child , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Infant , Middle Aged , Retrospective Studies , Transplantation, Homologous , Young Adult
12.
Clin Infect Dis ; 74(1): 136-139, 2022 01 07.
Article in English | MEDLINE | ID: mdl-33252644

ABSTRACT

We present a case of complete deficiency of the interferon alpha/beta receptor alpha chain (IFNAR1) in a child with fatal systemic hyperinflammation, apparently provoked by live-attenuated viral vaccination. Such pathologic hyperinflammation, fulfilling criteria for hemophagocytic lymphohistiocytosis, is an emerging phenotype accompanying inborn errors of type I interferon immunity.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Homozygote , Humans , Interferon-alpha/therapeutic use , Lymphohistiocytosis, Hemophagocytic/genetics , Receptor, Interferon alpha-beta/genetics
13.
Immunity ; 54(10): 2188-2190, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34644554

ABSTRACT

The concept of functional specialization is fundamental to the immune system but has not been previously observed in human Langerhans cells. In this issue of Immunity, Liu et al. use single-cell approaches to define two distinct epidermal subsets converging on a common activation and migration pathway.


Subject(s)
Langerhans Cells , Skin , Epidermis , Humans
14.
Blood Adv ; 5(24): 5631-5635, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34638133

ABSTRACT

A 3-year-old girl of nonconsanguineous healthy parents presented with cervical and mediastinal lymphadenopathy due to Mycobacterium fortuitum infection. Routine blood analysis showed normal hemoglobin, neutrophils, and platelets but profound mononuclear cell deficiency (monocytes < 0.1 × 109/L; B cells 78/µL; NK cells 48/µL). A 548 902-bp region containing GATA2 was sequenced by targeted capture and deep sequencing. This revealed a de novo 187-kb duplication of the entire GATA2 locus, containing a maternally inherited copy number variation deletion of 25 kb (GRCh37: esv2725896 and nsv513733). Many GATA2-associated phenotypes have been attributed to amino acid substitution, frameshift/deletion, loss of intronic enhancer function, or aberrant splicing. Gene deletion has been described, but other structural variation has not been reported in the germline configuration. In this case, duplication of the GATA2 locus was paradoxically associated with skewed diminished expression of GATA2 messenger RNA and loss of GATA2 protein. Chimeric RNA fusion transcripts were not detected. A possible mechanism involves increased transcription of the anti-sense long noncoding RNA GATA2-AS1 (RP11-472.220), which was increased several fold. This case further highlights that evaluation of the allele count is essential in any case of suspected GATA2-related syndrome.


Subject(s)
GATA2 Deficiency , Alleles , Child, Preschool , DNA Copy Number Variations , Female , GATA2 Deficiency/genetics , GATA2 Transcription Factor/genetics , Humans , Monocytes , Phenotype
15.
Front Immunol ; 11: 559166, 2020.
Article in English | MEDLINE | ID: mdl-33101275

ABSTRACT

Currently three bona fide dendritic cell (DC) types are distinguished in human blood. Herein we focus on type 2 DCs (DC2s) and compare the three defining markers CD1c, CD172, and CD301. When using CD1c to define DC2s, a CD14+ and a CD14- subset can be detected. The CD14+ subset shares features with monocytes, and this includes substantially higher expression levels for CD64, CD115, CD163, and S100A8/9. We review the current knowledge of these CD1c+CD14+ cells as compared to the CD1c+CD14- cells with respect to phenotype, function, transcriptomics, and ontogeny. Here, we discuss informative mutations, which suggest that two populations have different developmental requirements. In addition, we cover subsets of CD11c+CD8- DC2s in the mouse, where CLEC12A+ESAMlow cells, as compared to the CLEC12A-ESAMhigh subset, also express higher levels of monocyte-associated markers CD14, CD3, and CD115. Finally, we summarize, for both man and mouse, the data on lower antigen presentation and higher cytokine production in the monocyte-marker expressing DC2 subset, which demonstrate that the DC2 subsets are also functionally distinct.


Subject(s)
Antigens, CD1/metabolism , Dendritic Cells/immunology , Glycoproteins/metabolism , Monocytes/immunology , Animals , Antigens, Differentiation/metabolism , Asialoglycoproteins/metabolism , Cell Differentiation , Cell Lineage , Cytokines/metabolism , Humans , Immunity, Cellular , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Mice , Receptors, Immunologic/metabolism
16.
Immunity ; 53(2): 353-370.e8, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32735845

ABSTRACT

The formation of mammalian dendritic cells (DCs) is controlled by multiple hematopoietic transcription factors, including IRF8. Loss of IRF8 exerts a differential effect on DC subsets, including plasmacytoid DCs (pDCs) and the classical DC lineages cDC1 and cDC2. In humans, cDC2-related subsets have been described including AXL+SIGLEC6+ pre-DC, DC2 and DC3. The origin of this heterogeneity is unknown. Using high-dimensional analysis, in vitro differentiation, and an allelic series of human IRF8 deficiency, we demonstrated that cDC2 (CD1c+DC) heterogeneity originates from two distinct pathways of development. The lymphoid-primed IRF8hi pathway, marked by CD123 and BTLA, carried pDC, cDC1, and DC2 trajectories, while the common myeloid IRF8lo pathway, expressing SIRPA, formed DC3s and monocytes. We traced distinct trajectories through the granulocyte-macrophage progenitor (GMP) compartment showing that AXL+SIGLEC6+ pre-DCs mapped exclusively to the DC2 pathway. In keeping with their lower requirement for IRF8, DC3s expand to replace DC2s in human partial IRF8 deficiency.


Subject(s)
Antigens, CD34/metabolism , Dendritic Cells/cytology , Hematopoiesis/physiology , Interferon Regulatory Factors/metabolism , Animals , Antigens, CD1/metabolism , Cell Line , Cell Lineage/immunology , Dendritic Cells/immunology , Glycoproteins/metabolism , Hematopoietic Stem Cells/cytology , Humans , Interleukin-3 Receptor alpha Subunit/metabolism , Lipopolysaccharide Receptors/metabolism , Mice , Receptors, Immunologic/metabolism
17.
J Clin Invest ; 130(9): 4574-4586, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32453711

ABSTRACT

Myelopoiesis is invariably present and contributes to pathology in animal models of graft-versus-host disease (GVHD). In humans, a rich inflammatory infiltrate bearing macrophage markers has also been described in histological studies. In order to determine the origin, functional properties, and role in pathogenesis of these cells, we isolated single-cell suspensions from acute cutaneous GVHD and subjected them to genotype, transcriptome, and in vitro functional analysis. A donor-derived population of CD11c+CD14+ cells was the dominant population of all leukocytes in GVHD. Surface phenotype and NanoString gene expression profiling indicated the closest steady-state counterpart of these cells to be monocyte-derived macrophages. In GVHD, however, there was upregulation of monocyte antigens SIRPα and S100A8/9 transcripts associated with leukocyte trafficking, pattern recognition, antigen presentation, and costimulation. Isolated GVHD macrophages stimulated greater proliferation and activation of allogeneic T cells and secreted higher levels of inflammatory cytokines than their steady-state counterparts. In HLA-matched mixed leukocyte reactions, we also observed differentiation of activated macrophages with a similar phenotype. These exhibited cytopathicity to a keratinocyte cell line and mediated pathological damage to skin explants independently of T cells. Together, these results define the origin, functional properties, and potential pathogenic roles of human GVHD macrophages.


Subject(s)
Gene Expression Regulation/immunology , Graft vs Host Disease/immunology , Macrophages/immunology , Monocytes/immunology , Skin Diseases/immunology , Tissue Donors , Graft vs Host Disease/pathology , Humans , Macrophages/pathology , Monocytes/pathology , Skin Diseases/pathology
18.
Mol Immunol ; 122: 116-123, 2020 Apr 25.
Article in English | MEDLINE | ID: mdl-32344243

ABSTRACT

Dendritic Cells (DCs), derived from haematopoietic stem cells, are critical to the dynamic and balanced functioning of the intact immune system and are of great interest as vehicles of immunotherapy. Genetically modified mouse models have proved powerful tools to map DC development and function in vivo but human studies have previously relied heavily on in vitro systems. Human dendritic cell immunodeficiency, resulting from single gene mutations, offers new opportunities to dissect the role of human DCs in vivo, determine the genetic requirements for their development and map their haematopoietic differentiation pathways. This review will summarise the clinical phenotypes of mutations in GATA2, IRF8 and IKZF1 genes which result in global or subset specific dendritic cell deficiencies, discuss the functional consequences of these cytopenias and how these syndromes have informed our knowledge of DC differentiation and human haematopoiesis.

19.
Blood Adv ; 3(20): 3052-3061, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31648336

ABSTRACT

Fms-like tyrosine kinase 3 (Flt3) is expressed on progenitor cells and acute myeloid leukemia (AML) blasts. Fms-like tyrosine kinase 3 ligand (Flt3L) is detectable during homeostasis and increases in hypoplasia due to genetic defects or treatment with cytoreductive agents. Conversely, Flt3+ AML is associated with depletion of Flt3L to undetectable levels. After induction chemotherapy, Flt3L is restored in patients entering complete remission (CR) but remains depressed in those with refractory disease. Weekly sampling reveals marked differences in the kinetics of Flt3L response during the first 6 weeks of treatment, proportionate to the clearance of blasts and cellularity of the bone marrow. In the UK NCRI AML17 trial, Flt3L was measured at day 26 in a subgroup of 140 patients with Flt3 mutation randomized to the tyrosine kinase inhibitor lestaurtinib or placebo. In these patients, attainment of CR was associated with higher Flt3L at day 26 (Mann-Whitney UP < .0001). Day 26 Flt3L was also associated with survival; Flt3L ≤291 pg/mL was associated with inferior event-free survival (EFS), and Flt3L >1185 pg/mL was associated with higher overall survival (OS; P = .0119). The separation of EFS and OS curves increased when minimal residual disease (MRD) status was combined with Flt3L measurement, and Flt3L retained a near-significant association with survival after adjusting for MRD in a proportional hazards model. Serial measurement of Flt3L in patients who had received a hematopoietic stem cell transplant for AML illustrates the potential value of monitoring Flt3L to identify relapse. Measurement of Flt3L is a noninvasive test with the potential to inform clinical decisions in patients with AML.


Subject(s)
Biomarkers , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/diagnosis , Membrane Proteins/blood , Neoplastic Stem Cells/metabolism , Gene Expression , Hematopoietic Stem Cell Transplantation , Humans , Immunophenotyping , Induction Chemotherapy , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Prognosis , Proportional Hazards Models , Treatment Outcome
20.
Semin Cell Dev Biol ; 86: 50-61, 2019 02.
Article in English | MEDLINE | ID: mdl-29452225

ABSTRACT

The critical functions of dendritic cells (DCs) in immunity and tolerance have been demonstrated in many animal models but their non-redundant roles in humans are more difficult to probe. Human primary immunodeficiency (PID), resulting from single gene mutations, may result in DC deficiency or dysfunction. This relatively recent recognition illuminates the in vivo role of human DCs and the pathophysiology of the associated clinical syndromes. In this review, the development and function of DCs as established in murine models and human in vitro systems, discussed. This forms the basis of predicting the effects of DC deficiency in vivo and understanding the consequences of specific mutations on DC development and function. DC deficiency syndromes are associated with heterozygous GATA2 mutation, bi-allelic and heterozygous IRF8 mutation and heterozygous IKZF1 mutation. The intricate involvement of DCs in the balance between immunity and tolerance is leading to increased recognition of their involvement in a number of other immunodeficiencies and autoimmune conditions. Owing to the precise control of transcription factor gene expression by super-enhancer elements, phenotypic anomalies are relatively commonly caused by heterozygous mutations.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/pathology , Humans , Immune Tolerance , Immunity , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL