Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(3): 4444-4453, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36785412

ABSTRACT

In this work, we demonstrate and evaluate a new design of micro-structured core erbium-doped few-mode fiber to be used as optical amplifier in the context of mode-division multiplexing. This concept is proposed so as to better control the distribution of the Er3+ ions in the core area, thus permitting to adjust the overall differential modal gains between the different signal modes. The design presented here consists of 19 erbium-doped inclusions embedded in a pedestal geometry guiding 10 modes in the C-band. It has been optimized numerically so as to reach the equalized amplification of all the signal modes. The fiber has been realized and combined with custom-made dual-wavelength mode multiplexers based on multi-plane light conversion to shape the signal and pump beams. Amplification properties have finally been evaluated experimentally.

2.
Sensors (Basel) ; 21(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066035

ABSTRACT

The incorporation of Ce3+ ions in silicate glasses is a crucial issue for luminescence-based sensing applications. In this article, we report on silica glass preforms doped with cerium ions fabricated by modified chemical vapor deposition (MCVD) under different atmospheres in order to favor the Ce3+ oxidation state. Structural analysis and photophysical investigations are performed on the obtained glass rods. The preform fabricated under reducing atmosphere presents the highest photoluminescence (PL) quantum yield (QY). This preform drawn into a 125 µm-optical fiber, with a Ce-doped core diameter of about 40 µm, is characterized to confirm the presence of Ce3+ ions inside this optical fiber core. The fiber is then tested in an all-fibered X-ray dosimeter configuration. We demonstrate that this fiber allows the remote monitoring of the X-ray dose rate (flux) through a radioluminescence (RL) signal generated around 460 nm. The response dependence of RL versus dose rate exhibits a linear behavior over five decades, at least from 330 µGy(SiO2)/s up to 22.6 Gy(SiO2)/s. These results attest the potentialities of the MCVD-made Ce-doped material, obtained under reducing atmosphere, for real-time remote ionizing radiation dosimetry.

3.
Opt Lett ; 45(7): 1946-1949, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32236049

ABSTRACT

This Letter reports on a large mode area pixelated Bragg fiber in which some high refractive index rods were replaced by boron-doped rods that allows polarization maintaining behavior while keeping single-mode behavior. The realized all-solid fiber has a core diameter of 35 µm. The fundamental mode is circular with a 25 µm mode field diameter around 1 µm wavelength, and the polarization extinction ratio reaches 30 dB. Finally, this fiber is single-mode and bendable up to a 20 cm radius with fundamental mode losses lower than 0.3 dB/m.

4.
Lab Chip ; 20(1): 175-184, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31796946

ABSTRACT

In third generation sequencing, the production of quality data requires the selection of molecules longer than ∼20 kbp, but the size selection threshold of most purification technologies is smaller than this target. Here, we describe a technology operated in a capillary with a tunable selection threshold in the range of 3 to 40 kbp controlled by an electric field. We demonstrate that the selection cut-off is sharp, the purification yield is high, and the purification throughput is scalable. We also provide an analytical model that the actuation settings of the filter. The selection of high molecular weight genomic DNA from the melon Cucumis melo L., a diploid organism of ∼0.45 Gbp, is then reported. Linked-read sequencing data show that the N50 phase block size, which scores the correct representation of two chromosomes, is enhanced by a factor of 2 after size selection, establishing the relevance and versatility of our technology.


Subject(s)
DNA/chemistry , Cucumis melo/genetics , DNA/genetics , Molecular Weight , Particle Size , Sequence Analysis, DNA
5.
Opt Lett ; 44(17): 4127-4130, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31465345

ABSTRACT

Hollow core optical fibers are normally passive light transport components. In contrast, within this Letter, we numerically investigate the possibility of using them as optical amplifiers, through the adoption of a novel fiber structure. We show that optical amplification can be achieved in hollow core fibers, where the cladding region is partially doped and composed of both resonant and anti-resonant elements. A balance between loss and glass/optical mode overlap is obtained, which allows efficient amplification over a limited spectral bandwidth. We discuss the case of a thulium-doped optical amplifier based on this novel technological approach.

6.
Opt Lett ; 44(7): 1611-1614, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30933103

ABSTRACT

We propose and fabricate a novel ring-core photonic crystal fiber made of a circular ring core surrounded by a cladding constituted of air holes organized in a first circular ring surrounded by hexagonal ones. The fiber efficiently supports four different groups of orbital angular momentum (OAM) modes. The effective indices of spin-orbit aligned and spin-orbit anti-aligned modes in the same OAM modes group are separated by at least 2.13×10-3 at 1550 nm. The realized fiber is expected to be a good platform for applications involving OAM modes.

7.
Opt Lett ; 42(7): 1408-1411, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28362781

ABSTRACT

Accurate control of both the doping distribution inside the fiber core and the low refractive index contrast between the fiber core and cladding materials is essential for the development of high-power fiber lasers based on the use of single-mode large-mode-area (LMA) optical fibers. Herein, sol-gel monolithic F/Yb3+-codoped silica glasses were prepared from porous large silica xerogels doped with ytterbium salt solution, which had been subjected to fluorination with hexafluoroethane gas, before subsequent sintering. The fluorine content inside the doped glass has been varied by adjusting the fluorination duration. The space homogeneity of fluorine and ytterbium concentrations in the cylindrical preforms has been checked by chemical analysis and Raman spectroscopy. Moreover, the glass with the lowest fluorine content has been successfully integrated as a core material in a microstructured optical fiber made using the stack-and-draw method. This fiber was tested in an all-fiber cavity laser architecture to evaluate potential lasing performances of the F/Yb3+-codoped silica glass. It presents a maximum efficiency of 70.4%, achieved at 1031 nm from a 1.16 m length fiber. These results confirm the potentialities of the obtained F/Yb3+-codoped glasses for the fabrication of LMA optical fiber lasers.

8.
Nanoscale Res Lett ; 12(1): 206, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28325038

ABSTRACT

Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er 3+-doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er 3+ ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances. On the other hand, so as to avoid such quenching effect, glass modifiers like Al 3+ or P 5+ ions are used in the fabrication of commercial EDFs but are not suitable for applications in harsh environment because these glass modifiers are precursors of radiation-induced structural defects and consequently of optical losses. In this work, we investigate the concept of smart doping via material nanostructuring as a way to fabricate more efficient optical devices. This approach aims at optimizing the glass composition of the fiber core in order to use the minimal content of glass modifiers needed to reach the suited level of performances for EDFA. Er 3+-doped alumina nanoparticles (NPs), as precursor of Er 3+ ions in the preform fabrication process, were used to control the environment of rare-earth ions and their optical properties. Structural and optical characterizations of NP-doped preforms and optical fibers drawn from such preforms demonstrate the interest of this approach for small concentrations of aluminum in comparison to similar glass compositions obtained by a conventional technique.

9.
Opt Express ; 25(3): 2377-2390, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-29519084

ABSTRACT

We developed a generalized field-propagating model for active optical fibers that takes into account mode beating and mode coupling through the amplifying medium. We applied the model to the particular case of a few-mode erbium doped fiber amplifier. Results from the model predict that mode coupling mediated by the amplifying medium is very low. Furthermore, we applied the model to a typical amplifier configuration. In this particular configuration, the new model predicts much lower differential modal gain than that predicted by a classical intensity model.

10.
Opt Express ; 24(5): 4654-4661, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092294

ABSTRACT

We report on the study of a possible first step integration of mode division multiplexed optical component for single-mode fiber networks. State-of-the-art on few-mode erbium-doped fiber amplifiers is used to integrate the amplification function in a single component, which is expected to save energy in comparison to parallelized active components. So as to limit the impact of modal cross-talk, an elliptical-core few-mode erbium-doped fiber has been used to assemble an amplifier sharing setup for different single mode fibers, using non-degenerate modes. With this simple setup, we show the level of performances that can be reached for cross-talk, gain, differential modal gain and losses and discuss the ways to improve them for a possible integration in a real network.

11.
Opt Express ; 24(5): 4761-4770, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092305

ABSTRACT

This paper reports the design and the fabrication of an all-solid photonic bandgap fiber with core diameter larger than 100 µm, a record effective mode area of about 3700 µm2 at 1035 nm and robust single-mode behavior on propagation length as short as 90 cm. These properties are obtained by using a pixelated Bragg fiber geometry together with an heterostructuration of the cladding and the appropriated generalized half wave stack condition applied to the first three higher order modes. We detail the numerical study that permitted to select the most efficient cladding geometry and present the experimental results that validate our approach.

12.
Opt Express ; 23(25): 32496-503, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26699039

ABSTRACT

We report, through numerical simulations and experimental data, the first successful fabrication of a polarization maintaining single-mode fiber delivering a flat top intensity profile at 1.05 µm. A high quality flat mode was obtained and single-mode behavior was checked by shifting the injection and by S² imaging method. Numerical investigations were performed to show that it would be possible to increase further the 0.6x10⁻4 experimental group birefringence.

13.
Opt Lett ; 40(3): 363-6, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25680048

ABSTRACT

A new Pixelated Bragg Fiber design showing improved optical performances in terms of single-mode behavior and effective area is presented. The cladding is made of 3 rings of cylindrical high refractive index rods (pixels) in which some pixels are removed to act as a modal sieve for an improved rejection of Higher Order Modes (HOMs). Two half-wave-stack conditions are used to increase the confinement losses of the 3 first HOMs: LP11 and LP02-LP21 guided core modes. The realized fiber exhibits a core diameter of 48.5 µm with an effective single-mode behavior observed from 1000 nm to beyond 1700 nm even for a 1-m-long straight fiber. Losses prove to be low with a minimum value of 25 dB/km between 1200 and 1500 nm. Bending radius of 22.5 cm is reported for this structure without any significant extra-losses above a wavelength of 1350 nm.

14.
Opt Lett ; 39(16): 4780-3, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25121873

ABSTRACT

We report on an all-fiber system delivering more than 100 µJ pulses with a top-hat beam output in the few nanoseconds regime at 10 kHz. The linearly polarized flattened beam is obtained thanks to a 3-mm-long single-mode microstructured fiber spliced to the amplifier's output.

15.
Opt Lett ; 39(7): 1881-4, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24686629

ABSTRACT

We investigate numerically and experimentally the spectral correlation between multiple modulation instability (MI) side lobes in a dispersion oscillating fiber. By leveraging the dispersive Fourier transformation, we acquire instantaneous spectra and investigate the energy correlation between individual MI sidebands through scattergrams. We found that conjugate MI side lobes are strongly correlated while other combinations experience a very low degree of correlation, revealing that parametric processes related to each side lobe pair act quasi-independently.

16.
Opt Express ; 21(20): 23250-60, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24104239

ABSTRACT

A new strategy to obtain a single-mode fiber with a flattened intensity profile distribution is presented. It is based on the use of an OVD-made high index ring deposited on a silica rod having a refractive index slightly lower than the silica used for the microstructured cladding. Using this strategy, we realized the first single-mode fiber with a quasi-perfect top-hat intensity profile around 1 µm. Numerical studies clearly demonstrate the advantage of using a core index depression to insure the single-mode operation of the fiber at the working wavelength.

17.
Opt Express ; 21(25): 31646-59, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24514737

ABSTRACT

Design and experimental characterization of Er(3+)-doped fiber amplifiers supporting 6 spatial modes in wavelength division multiplexing regime are reported. The study is first focused on Er(3+)-doped circular ring-structured profiles accessible with conventional fiber manufacturing techniques. However, these fiber designs, optimized for gain equalization, prove to be difficult to obtain experimentally. So as to go beyond these limits, an alternative approach based on a "pixelated" Er(3+)-doped core is proposed. Several possible designs are theoretically investigated and a first fabrication of micro-structured fiber is presented.

18.
Opt Express ; 20(24): 27051-61, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23187561

ABSTRACT

Numerical and experimental study of a Few-Mode (FM) Erbium Doped Fiber Amplifier (EDFA) suitable for mode division multiplexing (MDM) is reported. Based on numerical simulations, a Few-Mode Erbium Doped Fiber (FM-EDF) has been designed to amplify four mode groups and to equally amplify LP11 and LP21 mode groups with gains greater than 20 dB and with a differential modal gain of less than 1 dB. Experimental results confirmed the simulations with a good concordance. This modal gain equalization is obtained by tailoring the erbium spatial distribution in the fiber core with a ring-shaped profile.


Subject(s)
Amplifiers, Electronic , Erbium/chemistry , Lasers , Optical Fibers , Oscillometry/methods , Computer-Aided Design , Equipment Design , Materials Testing , Scattering, Radiation
19.
Opt Express ; 20(17): 18795-802, 2012 Aug 13.
Article in English | MEDLINE | ID: mdl-23038519

ABSTRACT

A new type of Anti Resonant Reflecting Optical Waveguide (ARROW) fiber with a low refractive index contrast is reported. This waveguide is similar to a Bragg fiber for which the high index rings are replaced by discontinuous rings made of circular High Index Inclusions (HII). As compared to conventional Bragg fibers, such a new structure enables true Photonic BandGap (PBG) guidance and limits the number of cladding modes located within the high index regions, thus enhancing the guiding properties. A Mode Field Diameter (MFD) of 26 µm is reported at a wavelength of 1400 nm. Single Mode (SM) behavior is also observed beyond 1400 nm for a 1 m-long fiber.


Subject(s)
Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis
20.
Nanoscale Res Lett ; 7(1): 487, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22937818

ABSTRACT

Ionic copper- or silver-doped dense silica rods have been prepared by sintering sol-gel porous silica xerogels doped with ionic precursors. The precipitation of Cu or Ag nanoparticles was achieved by heat treatment under hydrogen followed by annealing under air atmosphere. The surface plasmon resonance bands of copper and silver nanoparticles have been clearly observed in the absorption spectra. The spectral positions of these bands were found to depend slightly on the particle size, which could be tuned by varying the annealing conditions. Hence, transmission electron microscopy showed the formation of spherical copper nanoparticles with diameters in the range of 3.3 to 5.6 nm. On the other hand, in the case of silver, both spherical nanoparticles with diameters in the range of 3 to 6 nm and nano-rods were obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...