Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 631(8019): 164-169, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926580

ABSTRACT

Plants adapt to fluctuating environmental conditions by adjusting their metabolism and gene expression to maintain fitness1. In legumes, nitrogen homeostasis is maintained by balancing nitrogen acquired from soil resources with nitrogen fixation by symbiotic bacteria in root nodules2-8. Here we show that zinc, an essential plant micronutrient, acts as an intracellular second messenger that connects environmental changes to transcription factor control of metabolic activity in root nodules. We identify a transcriptional regulator, FIXATION UNDER NITRATE (FUN), which acts as a sensor, with zinc controlling the transition between an inactive filamentous megastructure and an active transcriptional regulator. Lower zinc concentrations in the nodule, which we show occur in response to higher levels of soil nitrate, dissociates the filament and activates FUN. FUN then directly targets multiple pathways to initiate breakdown of the nodule. The zinc-dependent filamentation mechanism thus establishes a concentration readout to adapt nodule function to the environmental nitrogen conditions. In a wider perspective, these results have implications for understanding the roles of metal ions in integration of environmental signals with plant development and optimizing delivery of fixed nitrogen in legume crops.


Subject(s)
Gene Expression Regulation, Plant , Nitrates , Nitrogen Fixation , Root Nodules, Plant , Transcription Factors , Zinc , Zinc/metabolism , Transcription Factors/metabolism , Nitrates/metabolism , Root Nodules, Plant/metabolism , Nitrogen/metabolism , Medicago truncatula/metabolism , Medicago truncatula/genetics , Symbiosis , Plant Proteins/metabolism , Plant Proteins/genetics
2.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: mdl-34716271

ABSTRACT

Plants and animals use cell surface receptors to sense and interpret environmental signals. In legume symbiosis with nitrogen-fixing bacteria, the specific recognition of bacterial lipochitooligosaccharide (LCO) signals by single-pass transmembrane receptor kinases determines compatibility. Here, we determine the structural basis for LCO perception from the crystal structures of two lysin motif receptor ectodomains and identify a hydrophobic patch in the binding site essential for LCO recognition and symbiotic function. We show that the receptor monitors the composition of the amphiphilic LCO molecules and uses kinetic proofreading to control receptor activation and signaling specificity. We demonstrate engineering of the LCO binding site to fine-tune ligand selectivity and correct binding kinetics required for activation of symbiotic signaling in plants. Finally, the hydrophobic patch is found to be a conserved structural signature in this class of LCO receptors across legumes that can be used for in silico predictions. Our results provide insights into the mechanism of cell-surface receptor activation by kinetic proofreading of ligands and highlight the potential in receptor engineering to capture benefits in plant-microbe interactions.


Subject(s)
Fabaceae/genetics , Lipopolysaccharides/metabolism , Symbiosis/physiology , Fabaceae/metabolism , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Kinetics , Lipopolysaccharides/genetics , Mycorrhizae/physiology , Plant Proteins/genetics , Plants/metabolism , Rhizobium/physiology , Signal Transduction , Symbiosis/genetics
3.
New Phytol ; 226(3): 770-784, 2020 05.
Article in English | MEDLINE | ID: mdl-31880817

ABSTRACT

Pathogenic fungi often target the plant plasma membrane (PM) H+ -ATPase during infection. To identify pathogenic compounds targeting plant H+ -ATPases, we screened extracts from 10 Stemphylium species for their effect on H+ -ATPase activity. We identified Stemphylium loti extracts as potential H+ -ATPase inhibitors, and through chemical separation and analysis, tenuazonic acid (TeA) as a potent H+ -ATPase inhibitor. By assaying ATP hydrolysis and H+ pumping, we confirmed TeA as a H+ -ATPase inhibitor both in vitro and in vivo. To visualize in planta inhibition of the H+ -ATPase, we treated pH-sensing Arabidopsis thaliana seedlings with TeA and quantified apoplastic alkalization. TeA affected both ATPase hydrolysis and H+ pumping, supporting a direct effect on the H+ -ATPase. We demonstrated apoplastic alkalization of A. thaliana seedlings after short-term TeA treatment, indicating that TeA effectively inhibits plant PM H+ -ATPase in planta. TeA-induced inhibition was highly dependent on the regulatory C-terminal domain of the plant H+ -ATPase. Stemphylium loti is a phytopathogenic fungus. Inhibiting the plant PM H+ -ATPase results in membrane potential depolarization and eventually necrosis. The corresponding fungal H+ -ATPase, PMA1, is less affected by TeA when comparing native preparations. Fungi are thus able to target an essential plant enzyme without causing self-toxicity.


Subject(s)
Arabidopsis , Tenuazonic Acid , Arabidopsis/metabolism , Ascomycota , Cell Membrane/metabolism , Proton-Translocating ATPases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...