Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Neurobiol Dis ; 198: 106537, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38772452

ABSTRACT

Hereditary spastic paraplegia (HSP) comprises a large group of neurogenetic disorders characterized by progressive lower extremity spasticity. Neurological evaluation and genetic testing were completed in a Malian family with early-onset HSP. Three children with unaffected consanguineous parents presented with symptoms consistent with childhood-onset complicated HSP. Neurological evaluation found lower limb weakness, spasticity, dysarthria, seizures, and intellectual disability. Brain MRI showed corpus callosum thinning with cortical and spinal cord atrophy, and an EEG detected slow background in the index patient. Whole exome sequencing identified a homozygous missense variant in the adaptor protein (AP) complex 2 alpha-2 subunit (AP2A2) gene. Western blot analysis showed reduced levels of AP2A2 in patient-iPSC derived neuronal cells. Endocytosis of transferrin receptor (TfR) was decreased in patient-derived neurons. In addition, we observed increased axon initial segment length in patient-derived neurons. Xenopus tropicalis tadpoles with ap2a2 knockout showed cerebral edema and progressive seizures. Immunoprecipitation of the mutant human AP-2-appendage alpha-C construct showed defective binding to accessory proteins. We report AP2A2 as a novel genetic entity associated with HSP and provide functional data in patient-derived neuron cells and a frog model. These findings expand our understanding of the mechanism of HSP and improve the genetic diagnosis of this condition.


Subject(s)
Adaptor Protein Complex 2 , Endocytosis , Spastic Paraplegia, Hereditary , Animals , Child , Child, Preschool , Female , Humans , Male , Adaptor Protein Complex 2/genetics , Endocytosis/genetics , Endocytosis/physiology , Mutation/genetics , Mutation, Missense , Neurons/metabolism , Neurons/pathology , Pedigree , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/pathology , Xenopus
2.
Brain ; 147(6): 2085-2097, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38735647

ABSTRACT

Biallelic pathogenic variants in the PNPLA6 gene cause a broad spectrum of disorders leading to gait disturbance, visual impairment, anterior hypopituitarism and hair anomalies. PNPLA6 encodes neuropathy target esterase (NTE), yet the role of NTE dysfunction on affected tissues in the large spectrum of associated disease remains unclear. We present a systematic evidence-based review of a novel cohort of 23 new patients along with 95 reported individuals with PNPLA6 variants that implicate missense variants as a driver of disease pathogenesis. Measuring esterase activity of 46 disease-associated and 20 common variants observed across PNPLA6-associated clinical diagnoses unambiguously reclassified 36 variants as pathogenic and 10 variants as likely pathogenic, establishing a robust functional assay for classifying PNPLA6 variants of unknown significance. Estimating the overall NTE activity of affected individuals revealed a striking inverse relationship between NTE activity and the presence of retinopathy and endocrinopathy. This phenomenon was recaptured in vivo in an allelic mouse series, where a similar NTE threshold for retinopathy exists. Thus, PNPLA6 disorders, previously considered allelic, are a continuous spectrum of pleiotropic phenotypes defined by an NTE genotype:activity:phenotype relationship. This relationship, and the generation of a preclinical animal model, pave the way for therapeutic trials, using NTE as a biomarker.


Subject(s)
Phenotype , Animals , Female , Humans , Male , Mice , Acyltransferases , Carboxylic Ester Hydrolases/genetics , Mutation, Missense , Phospholipases/genetics , Retinal Diseases/genetics
3.
J Clin Invest ; 134(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165040

ABSTRACT

Early identification of neurodegenerative diseases before extensive neuronal loss or disabling symptoms have occurred is imperative for effective use of disease-modifying therapies. Emerging data indicate that central Lewy body diseases - Parkinson disease and dementia with Lewy bodies - can begin in the peripheral nervous system, opening up a therapeutic window before central involvement. In this issue of the JCI, Goldstein et al. report that cardiac 18F-dopamine positron emission tomography reveals lower activity selectively in individuals with several self-reported Parkinson disease risk factors who later develop Parkinson disease or dementia with Lewy bodies. Accurately identifying which at-risk individuals will develop central Lewy body disease will optimize early patient selection for disease-modifying therapies.


Subject(s)
Lewy Body Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Lewy Body Disease/diagnostic imaging , Parkinson Disease/diagnostic imaging , Heart , Positron-Emission Tomography
4.
Nature ; 626(7997): 169-176, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38267577

ABSTRACT

To coordinate cellular physiology, eukaryotic cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites1,2. Endoplasmic reticulum-mitochondrial contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signalling molecules, lipids and metabolites3,4. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle5,6. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation7,8, a clear understanding of their nanoscale organization and regulation is still lacking. Here we combine three-dimensional electron microscopy with high-speed molecular tracking of a model organelle tether, Vesicle-associated membrane protein (VAMP)-associated protein B (VAPB), to map the structure and diffusion landscape of ERMCSs. We uncovered dynamic subdomains within VAPB contact sites that correlate with ER membrane curvature and undergo rapid remodelling. We show that VAPB molecules enter and leave ERMCSs within seconds, despite the contact site itself remaining stable over much longer time scales. This metastability allows ERMCSs to remodel with changes in the physiological environment to accommodate metabolic needs of the cell. An amyotrophic lateral sclerosis-associated mutation in VAPB perturbs these subdomains, likely impairing their remodelling capacity and resulting in impaired interorganelle communication. These results establish high-speed single-molecule imaging as a new tool for mapping the structure of contact site interfaces and reveal that the diffusion landscape of VAPB at contact sites is a crucial component of ERMCS homeostasis.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Mitochondrial Membranes , Movement , Vesicular Transport Proteins , Humans , Amyotrophic Lateral Sclerosis/genetics , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Mitochondria/chemistry , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/ultrastructure , Signal Transduction , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/ultrastructure , Microscopy, Electron , Imaging, Three-Dimensional , Binding Sites , Diffusion , Time Factors , Mutation , Homeostasis
5.
bioRxiv ; 2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37333224

ABSTRACT

Biallelic pathogenic variants in the PNPLA6 gene cause a broad spectrum of disorders leading to gait disturbance, visual impairment, anterior hypopituitarism, and hair anomalies. PNPLA6 encodes Neuropathy target esterase (NTE), yet the role of NTE dysfunction on affected tissues in the large spectrum of associated disease remains unclear. We present a clinical meta-analysis of a novel cohort of 23 new patients along with 95 reported individuals with PNPLA6 variants that implicate missense variants as a driver of disease pathogenesis. Measuring esterase activity of 46 disease-associated and 20 common variants observed across PNPLA6 -associated clinical diagnoses unambiguously reclassified 10 variants as likely pathogenic and 36 variants as pathogenic, establishing a robust functional assay for classifying PNPLA6 variants of unknown significance. Estimating the overall NTE activity of affected individuals revealed a striking inverse relationship between NTE activity and the presence of retinopathy and endocrinopathy. This phenomenon was recaptured in vivo in an allelic mouse series, where a similar NTE threshold for retinopathy exists. Thus, PNPLA6 disorders, previously considered allelic, are a continuous spectrum of pleiotropic phenotypes defined by an NTE genotype:activity:phenotype relationship. This relationship and the generation of a preclinical animal model pave the way for therapeutic trials, using NTE as a biomarker.

6.
Orphanet J Rare Dis ; 18(1): 72, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024986

ABSTRACT

BACKGROUND: Biallelic mutations in CYP27A1 and CYP7B1, two critical genes regulating cholesterol and bile acid metabolism, cause cerebrotendinous xanthomatosis (CTX) and hereditary spastic paraplegia type 5 (SPG5), respectively. These rare diseases are characterized by progressive degeneration of corticospinal motor neuron axons, yet the underlying pathogenic mechanisms and strategies to mitigate axonal degeneration remain elusive. METHODS: To generate induced pluripotent stem cell (iPSC)-based models for CTX and SPG5, we reprogrammed patient skin fibroblasts into iPSCs by transducing fibroblast cells with episomal vectors containing pluripotency factors. These patient-specific iPSCs, as well as control iPSCs, were differentiated into cortical projection neurons (PNs) and examined for biochemical alterations and disease-related phenotypes. RESULTS: CTX and SPG5 patient iPSC-derived cortical PNs recapitulated several disease-specific biochemical changes and axonal defects of both diseases. Notably, the bile acid chenodeoxycholic acid (CDCA) effectively mitigated the biochemical alterations and rescued axonal degeneration in patient iPSC-derived neurons. To further examine underlying disease mechanisms, we developed CYP7B1 knockout human embryonic stem cell (hESC) lines using CRISPR-cas9-mediated gene editing and, following differentiation, examined hESC-derived cortical PNs. Knockout of CYP7B1 resulted in similar axonal vesiculation and degeneration in human cortical PN axons, confirming a cause-effect relationship between gene deficiency and axonal degeneration. Interestingly, CYP7B1 deficiency led to impaired neurofilament expression and organization as well as axonal degeneration, which could be rescued with CDCA, establishing a new disease mechanism and therapeutic target to mitigate axonal degeneration. CONCLUSIONS: Our data demonstrate disease-specific lipid disturbances and axonopathy mechanisms in human pluripotent stem cell-based neuronal models of CTX and SPG5 and identify CDCA, an established treatment of CTX, as a potential pharmacotherapy for SPG5. We propose this novel treatment strategy to rescue axonal degeneration in SPG5, a currently incurable condition.


Subject(s)
Induced Pluripotent Stem Cells , Spastic Paraplegia, Hereditary , Xanthomatosis, Cerebrotendinous , Humans , Chenodeoxycholic Acid/pharmacology , Chenodeoxycholic Acid/therapeutic use , Chenodeoxycholic Acid/metabolism , Xanthomatosis, Cerebrotendinous/genetics , Neurons/metabolism , Neurons/pathology , Spastic Paraplegia, Hereditary/metabolism , Bile Acids and Salts , Paraplegia/metabolism
7.
Brain ; 146(1): 278-294, 2023 01 05.
Article in English | MEDLINE | ID: mdl-35867854

ABSTRACT

Spinal bulbar muscular atrophy (SBMA), the first identified CAG-repeat expansion disorder, is an X-linked neuromuscular disorder involving CAG-repeat-expansion mutations in the androgen receptor (AR) gene. We utilized CRISPR-Cas9 gene editing to engineer novel isogenic human induced pluripotent stem cell (hiPSC) models, consisting of isogenic AR knockout, control and disease lines expressing mutant AR with distinct repeat lengths, as well as control and disease lines expressing FLAG-tagged wild-type and mutant AR, respectively. Adapting a small-molecule cocktail-directed approach, we differentiate the isogenic hiPSC models into motor neuron-like cells with a highly enriched population to uncover cell-type-specific mechanisms underlying SBMA and to distinguish gain- from loss-of-function properties of mutant AR in disease motor neurons. We demonstrate that ligand-free mutant AR causes drastic mitochondrial dysfunction in neurites of differentiated disease motor neurons due to gain-of-function mechanisms and such cytotoxicity can be amplified upon ligand (androgens) treatment. We further show that aberrant interaction between ligand-free, mitochondria-localized mutant AR and F-ATP synthase is associated with compromised mitochondrial respiration and multiple other mitochondrial impairments. These findings counter the established notion that androgens are requisite for mutant AR-induced cytotoxicity in SBMA, reveal a compelling mechanistic link between ligand-free mutant AR, F-ATP synthase and mitochondrial dysfunction, and provide innovative insights into motor neuron-specific therapeutic interventions for SBMA.


Subject(s)
Induced Pluripotent Stem Cells , Muscular Atrophy, Spinal , Humans , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Induced Pluripotent Stem Cells/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy , Mitochondria/metabolism , Adenosine Triphosphate/metabolism
8.
Brain ; 146(5): 2003-2015, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36315648

ABSTRACT

In the field of hereditary spastic paraplegia (HSP), progress in molecular diagnostics needs to be translated into robust phenotyping studies to understand genetic and phenotypic heterogeneity and to support interventional trials. ZFYVE26-associated hereditary spastic paraplegia (HSP-ZFYVE26, SPG15) is a rare, early-onset complex HSP, characterized by progressive spasticity and a variety of other neurological symptoms. While prior reports, often in populations with high rates of consanguinity, have established a general phenotype, there is a lack of systematic investigations and a limited understanding of age-dependent manifestation of symptoms. Here we delineate the clinical, neuroimaging and molecular features of 44 individuals from 36 families, the largest cohort assembled to date. Median age at last follow-up was 23.8 years covering a wide age range (11-61 years). While symptom onset often occurred in early childhood [median: 24 months, interquartile range (IQR) = 24], a molecular diagnosis was reached at a median age of 18.8 years (IQR = 8), indicating significant diagnostic delay. We demonstrate that most patients present with motor and/or speech delay or learning disabilities. Importantly, these developmental symptoms preceded the onset of motor symptoms by several years. Progressive spasticity in the lower extremities, the hallmark feature of HSP-ZFYVE26, typically presents in adolescence and involves the distal lower limbs before progressing proximally. Spasticity in the upper extremities was seen in 64%. We found a high prevalence of extrapyramidal movement disorders including cerebellar ataxia (64%) and dystonia (11%). Parkinsonism (16%) was present in a subset and showed no sustained response to levodopa. Cognitive decline and neurogenic bladder dysfunction progressed over time in most patients. A systematic analysis of brain MRI features revealed a common diagnostic signature consisting of thinning of the anterior corpus callosum, signal changes of the anterior forceps and non-specific cortical and cerebellar atrophy. The molecular spectrum included 45 distinct variants, distributed across the protein structure without mutational hotspots. Spastic Paraplegia Rating Scale scores, SPATAX Disability Scores and the Four Stage Functional Mobility Score showed moderate strength in representing the proportion of variation between disease duration and motor dysfunction. Plasma neurofilament light chain levels were significantly elevated in all patients (Mann-Whitney U-test, P < 0.0001) and were correlated inversely with age (Spearman's rank correlation coefficient r = -0.65, P = 0.01). In summary, our systematic cross-sectional analysis of HSP-ZFYVE26 patients across a wide age-range, delineates core clinical, neuroimaging and molecular features and identifies markers of disease severity. These results raise awareness to this rare disease, facilitate an early diagnosis and create clinical trial readiness.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Child, Preschool , Spastic Paraplegia, Hereditary/genetics , Cross-Sectional Studies , Delayed Diagnosis , Proteins/genetics , Mutation
9.
Hum Mol Genet ; 32(1): 93-103, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35925862

ABSTRACT

Pathogenic variants in ATL1 are a known cause of autosomal-dominantly inherited hereditary spastic paraplegia (HSP-ATL1, SPG3A) with a predominantly 'pure' HSP phenotype. Although a relatively large number of patients have been reported, no genotype-phenotype correlations have been established for specific ATL1 variants. Confronted with five children carrying de novo ATL1 variants showing early, complex and severe symptoms, we systematically investigated the molecular and phenotypic spectrum of HSP-ATL1. Through a cross-sectional analysis of 537 published and novel cases, we delineate a distinct phenotype observed in patients with de novo variants. Guided by this systematic phenotyping approach and structural modelling of disease-associated variants in atlastin-1, we demonstrate that this distinct phenotypic signature is also prevalent in a subgroup of patients with inherited ATL1 variants and is largely explained by variant localization within a three-dimensional mutational cluster. Establishing genotype-phenotype correlations, we find that symptoms that extend well beyond the typical pure HSP phenotype (i.e. neurodevelopmental abnormalities, upper limb spasticity, bulbar symptoms, peripheral neuropathy and brain imaging abnormalities) are prevalent in patients with variants located within this mutational cluster.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Cross-Sectional Studies , DNA Mutational Analysis , GTP-Binding Proteins/genetics , Membrane Proteins/genetics , Mutation , Pedigree , Phenotype , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/pathology
11.
Mov Disord ; 37(12): 2440-2446, 2022 12.
Article in English | MEDLINE | ID: mdl-36103453

ABSTRACT

BACKGROUND: Familial hereditary spastic paraplegia (HSP)-SPAST (SPG4) typically presents with a pure HSP phenotype. OBJECTIVE: The aim of this study was to delineate the genotypic and phenotypic spectrum of children with de novo HSP-SPAST. METHODS: This study used a systematic cross-sectional analysis of clinical and molecular features. RESULTS: We report the clinical and molecular spectrum of 40 patients with heterozygous pathogenic de novo variants in SPAST (age range: 2.2-27.7 years). We identified 19 unique variants (16/40 carried the same recurrent variant, p.Arg499His). Symptom onset was in early childhood (median: 11.0 months, interquartile range: 6.0 months) with significant motor and speech delay, followed by progressive ascending spasticity, dystonia, neurogenic bladder dysfunction, gastrointestinal dysmotility, and epilepsy. The mean Spastic Paraplegia Rating Scale score was 32.8 ± 9.7 (standard deviation). CONCLUSIONS: These results confirm that de novo variants in SPAST lead to a severe and complex form of HSP that differs from classic familial pure HSP-SPAST. Clinicians should be aware of this syndrome in the differential diagnosis for cerebral palsy. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Spastic Paraplegia, Hereditary , Child, Preschool , Humans , Cross-Sectional Studies , Muscle Spasticity , Mutation , Phenotype , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/diagnosis , Spastin/genetics , Child , Adolescent , Young Adult , Adult
12.
Genes (Basel) ; 13(6)2022 05 24.
Article in English | MEDLINE | ID: mdl-35741698

ABSTRACT

We describe evidence of fatty liver disease in patients with forms of motor neuron degeneration with both genetic and sporadic etiology compared to controls. A group of 13 patients with motor neuron disease underwent liver imaging and laboratory analysis. The cohort included five patients with hereditary spastic paraplegia, four with sporadic amyotrophic lateral sclerosis (ALS), three with familial ALS, and one with primary lateral sclerosis. A genetic mutation was reported in nine of the thirteen motor neuron disease (MND) patients. Fatty liver disease was detected in 10 of 13 (77%) MND patients via magnetic resonance spectroscopy, with an average dome intrahepatic triacylglycerol content of 17% (range 2-63%, reference ≤5.5%). Liver ultrasound demonstrated evidence of fatty liver disease in 6 of the 13 (46%) patients, and serum liver function testing revealed significantly elevated alanine aminotransferase levels in MND patients compared to age-matched controls. Fatty liver disease may represent a non-neuronal clinical component of various forms of MND.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Neuron Disease , Non-alcoholic Fatty Liver Disease , Amyotrophic Lateral Sclerosis/pathology , Humans , Motor Neuron Disease/genetics , Motor Neuron Disease/pathology , Nerve Degeneration , Non-alcoholic Fatty Liver Disease/genetics
13.
BMC Neurol ; 22(1): 115, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35331153

ABSTRACT

BACKGROUND: Hereditary spastic paraplegias (HSPs) are progressively debilitating neurodegenerative disorders that follow heterogenous patterns of Mendelian inheritance. Available epidemiological evidence provides limited incidence and prevalence data, especially at the genetic subtype level, preventing a realistic estimation of the true social burden of the disease. The objectives of this study were to (1) review the literature on epidemiology of HSPs; and (2) develop an epidemiological model of the prevalence of HSP, focusing on four common HSP genetic subtypes at the country and region-level. METHODS: A model was constructed estimating the incidence at birth, survival, and prevalence of four genetic subtypes of HSP based on the most appropriate published literature. The key model parameters were assessed by HSP clinical experts, who provided feedback on the validity of assumptions. A model was then finalized and validated through comparison of outputs against available evidence. The global, regional, and national prevalence and patient pool were calculated per geographic region and per genetic subtype. RESULTS: The HSP global prevalence was estimated to be 3.6 per 100,000 for all HSP forms, whilst the estimated global prevalence per genetic subtype was 0.90 (SPG4), 0.22 (SPG7), 0.34 (SPG11), and 0.13 (SPG15), respectively. This equates to an estimated 3365 (SPG4) and 872 (SPG11) symptomatic patients, respectively, in the USA. CONCLUSIONS: This is the first epidemiological model of HSP prevalence at the genetic subtype-level reported at multiple geographic levels. This study offers additional data to better capture the burden of illness due to mutations in common genes causing HSP, that can inform public health policy and healthcare service planning, especially in regions with higher estimated prevalence of HSP.


Subject(s)
Spastic Paraplegia, Hereditary , ATPases Associated with Diverse Cellular Activities/genetics , Humans , Incidence , Infant, Newborn , Metalloendopeptidases/genetics , Mutation , Prevalence , Proteins/genetics , Spastic Paraplegia, Hereditary/epidemiology , Spastic Paraplegia, Hereditary/genetics
14.
Acta Neuropathol Commun ; 10(1): 40, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35346366

ABSTRACT

Hereditary spastic paraplegias (HSPs) are a group of inherited, progressive neurodegenerative conditions characterised by prominent lower-limb spasticity and weakness, caused by a length-dependent degeneration of the longest corticospinal upper motor neurons. While more than 80 spastic paraplegia genes (SPGs) have been identified, many cases arise from mutations in genes encoding proteins which generate and maintain tubular endoplasmic reticulum (ER) membrane organisation. The ER-shaping proteins are essential for the health and survival of long motor neurons, however the mechanisms by which mutations in these genes cause the axonopathy observed in HSP have not been elucidated. To further develop our understanding of the ER-shaping proteins, this study outlines the generation of novel in vivo and in vitro models, using CRISPR/Cas9-mediated gene editing to knockout the ER-shaping protein ADP-ribosylation factor-like 6 interacting protein 1 (ARL6IP1), mutations in which give rise to the HSP subtype SPG61. Loss of Arl6IP1 in Drosophila results in progressive locomotor deficits, emulating a key aspect of HSP in patients. ARL6IP1 interacts with ER-shaping proteins and is required for regulating the organisation of ER tubules, particularly within long motor neuron axons. Unexpectedly, we identified physical and functional interactions between ARL6IP1 and the phospholipid transporter oxysterol-binding protein-related protein 8 in both human and Drosophila model systems, pointing to a conserved role for ARL6IP1 in lipid homeostasis. Furthermore, loss of Arl6IP1 from Drosophila neurons results in a cell non-autonomous accumulation of lipid droplets in axonal glia. Importantly, treatment with lipid regulating liver X receptor-agonists blocked lipid droplet accumulation, restored axonal ER organisation, and improved locomotor function in Arl6IP1 knockout Drosophila. Our findings indicate that disrupted lipid homeostasis contributes to neurodegeneration in HSP, identifying a potential novel therapeutic avenue for the treatment of this disorder.


Subject(s)
Liver X Receptors , Spastic Paraplegia, Hereditary , Animals , Disease Models, Animal , Drosophila/metabolism , Endoplasmic Reticulum/metabolism , Humans , Liver X Receptors/agonists , Membrane Transport Proteins/genetics , Spastic Paraplegia, Hereditary/drug therapy , Spastic Paraplegia, Hereditary/genetics
15.
Nat Commun ; 13(1): 1582, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35332133

ABSTRACT

Mitochondrial fission is critically important for controlling mitochondrial morphology, function, quality and transport. Drp1 is the master regulator driving mitochondrial fission, but exactly how Drp1 is regulated remains unclear. Here, we identified Drosophila Clueless and its mammalian orthologue CLUH as key regulators of Drp1. As with loss of drp1, depletion of clueless or CLUH results in mitochondrial elongation, while as with drp1 overexpression, clueless or CLUH overexpression leads to mitochondrial fragmentation. Importantly, drp1 overexpression rescues adult lethality, tissue disintegration and mitochondrial defects of clueless null mutants in Drosophila. Mechanistically, Clueless and CLUH promote recruitment of Drp1 to mitochondria from the cytosol. This involves CLUH binding to mRNAs encoding Drp1 receptors MiD49 and Mff, and regulation of their translation. Our findings identify a crucial role of Clueless and CLUH in controlling mitochondrial fission through regulation of Drp1.


Subject(s)
Dynamins , Mitochondrial Dynamics , Animals , Cytoskeletal Proteins/metabolism , Drosophila/metabolism , Dynamins/genetics , Dynamins/metabolism , GTP-Binding Proteins/metabolism , Mammals/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Dynamics/physiology , Mitochondrial Proteins/metabolism , Peptide Elongation Factors/metabolism
16.
Hum Mol Genet ; 31(16): 2779-2795, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35348668

ABSTRACT

Hereditary spastic paraplegias (HSPs) comprise a large group of inherited neurologic disorders affecting the longest corticospinal axons (SPG1-86 plus others), with shared manifestations of lower extremity spasticity and gait impairment. Common autosomal dominant HSPs are caused by mutations in genes encoding the microtubule-severing ATPase spastin (SPAST; SPG4), the membrane-bound GTPase atlastin-1 (ATL1; SPG3A) and the reticulon-like, microtubule-binding protein REEP1 (REEP1; SPG31). These proteins bind one another and function in shaping the tubular endoplasmic reticulum (ER) network. Typically, mouse models of HSPs have mild, later onset phenotypes, possibly reflecting far shorter lengths of their corticospinal axons relative to humans. Here, we have generated a robust, double mutant mouse model of HSP in which atlastin-1 is genetically modified with a K80A knock-in (KI) missense change that abolishes its GTPase activity, whereas its binding partner Reep1 is knocked out. Atl1KI/KI/Reep1-/- mice exhibit early onset and rapidly progressive declines in several motor function tests. Also, ER in mutant corticospinal axons dramatically expands transversely and periodically in a mutation dosage-dependent manner to create a ladder-like appearance, on the basis of reconstructions of focused ion beam-scanning electron microscopy datasets using machine learning-based auto-segmentation. In lockstep with changes in ER morphology, axonal mitochondria are fragmented and proportions of hypophosphorylated neurofilament H and M subunits are dramatically increased in Atl1KI/KI/Reep1-/- spinal cord. Co-occurrence of these findings links ER morphology changes to alterations in mitochondrial morphology and cytoskeletal organization. Atl1KI/KI/Reep1-/- mice represent an early onset rodent HSP model with robust behavioral and cellular readouts for testing novel therapies.


Subject(s)
Disease Models, Animal , Membrane Proteins , Membrane Transport Proteins , Spastic Paraplegia, Hereditary , Animals , Axons/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , GTP Phosphohydrolases/genetics , Humans , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Mice , Mice, Knockout , Mutation , Spastic Paraplegia, Hereditary/genetics , Spastin/genetics
18.
Brain ; 145(11): 4016-4031, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35026838

ABSTRACT

Hereditary spastic paraplegias are characterized by lower limb spasticity resulting from degeneration of long corticospinal axons. SPG11 is one of the most common autosomal recessive hereditary spastic paraplegias, and the SPG11 protein spatacsin forms a complex with the SPG15 protein spastizin and heterotetrameric AP5 adaptor protein complex, which includes the SPG48 protein AP5Z1. Using the integration-free episomal method, we established SPG11 patient-specific induced pluripotent stem cells (iPSCs) from patient fibroblasts. We differentiated SPG11 iPSCs, as well as SPG48 iPSCs previously established, into cortical projection neurons and examined protective effects by targeting mitochondrial dynamics using P110, a peptide that selectively inhibits mitochondrial fission GTPase Drp1. P110 treatment mitigates mitochondrial fragmentation, improves mitochondrial motility, and restores mitochondrial health and ATP levels in SPG11 and SPG48 neurons. Neurofilament aggregations are increased in SPG11 and SPG48 axons, and these are also suppressed by P110. Similarly, P110 mitigates neurofilament disruption in both SPG11 and SPG48 knockdown cortical projection neurons, confirming the contribution of hereditary spastic paraplegia gene deficiency to subsequent neurofilament and mitochondrial defects. Strikingly, neurofilament aggregations in SPG11 and SPG48 deficient neurons double stain with ubiquitin and autophagy related proteins, resembling the pathological hallmark observed in SPG11 autopsy brain sections. To confirm the cause-effect relationship between the SPG11 mutations and disease phenotypes, we knocked-in SPG11 disease mutations to human embryonic stem cells (hESCs) and differentiated these stem cells into cortical projection neurons. Reduced ATP levels and accumulated neurofilament aggregations along axons are observed, and both are mitigated by P110. Furthermore, rescue experiment with expression of wild-type SPG11 in cortical projection neurons derived from both SPG11 patient iPSCs and SPG11 disease mutation knock-in hESCs leads to rescue of mitochondrial dysfunction and neurofilament aggregations in these SPG11 neurons. Finally, in SPG11 and SPG48 long-term cultures, increased release of phosphoNF-H, a biomarker for nerve degeneration, is significantly reduced by inhibiting mitochondrial fission pharmacologically using P110 and genetically using Drp1 shRNA. Taken together, our results demonstrate that impaired mitochondrial dynamics underlie both cytoskeletal disorganization and axonal degeneration in SPG11 and SPG48 neurons, highlighting the importance of targeting these pathologies therapeutically.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/pathology , Mitochondrial Dynamics , Neurons/metabolism , Mutation , Adenosine Triphosphate/metabolism , Proteins/genetics
19.
Nature ; 601(7891): 132-138, 2022 01.
Article in English | MEDLINE | ID: mdl-34912111

ABSTRACT

Organelles move along differentially modified microtubules to establish and maintain their proper distributions and functions1,2. However, how cells interpret these post-translational microtubule modification codes to selectively regulate organelle positioning remains largely unknown. The endoplasmic reticulum (ER) is an interconnected network of diverse morphologies that extends promiscuously throughout the cytoplasm3, forming abundant contacts with other organelles4. Dysregulation of endoplasmic reticulum morphology is tightly linked to neurologic disorders and cancer5,6. Here we demonstrate that three membrane-bound endoplasmic reticulum proteins preferentially interact with different microtubule populations, with CLIMP63 binding centrosome microtubules, kinectin (KTN1) binding perinuclear polyglutamylated microtubules, and p180 binding glutamylated microtubules. Knockout of these proteins or manipulation of microtubule populations and glutamylation status results in marked changes in endoplasmic reticulum positioning, leading to similar redistributions of other organelles. During nutrient starvation, cells modulate CLIMP63 protein levels and p180-microtubule binding to bidirectionally move endoplasmic reticulum and lysosomes for proper autophagic responses.


Subject(s)
Centrosome/metabolism , Endoplasmic Reticulum/metabolism , Lysosomes/metabolism , Tubulin/metabolism , Animals , Autophagy , Biological Transport , Cell Line , Glutamic Acid/metabolism , Humans , Membrane Proteins/metabolism , Microtubules/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...