Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Biol ; 34(12): 2712-2718.e3, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38806055

ABSTRACT

New World porcupines (Erethizontinae) originated in South America and dispersed into North America as part of the Great American Biotic Interchange (GABI) 3-4 million years ago.1 Extant prehensile-tailed porcupines (Coendou) today live in tropical forests of Central and South America.2,3 In contrast, North American porcupines (Erethizon dorsatum) are thought to be ecologically adapted to higher-latitude temperate forests, with a larger body, shorter tail, and diet that includes bark.4,5,6,7 Limited fossils8,9,10,11,12,13 have hindered our understanding of the timing of this ecological differentiation relative to intercontinental dispersal during the GABI and expansion into temperate habitats.14,15,16,17,18 Here, we describe functionally important features of the skeleton of the extinct Erethizon poyeri, the oldest nearly complete porcupine skeleton documented from North America, found in the early Pleistocene of Florida. It differs from extant E. dorsatum in having a long, prehensile tail, grasping foot, and lacking dental specializations for bark gnawing, similar to tropical Coendou. Results from phylogenetic analysis suggest that the more arboreal characteristics found in E. poyeri are ancestral for erethizontines. Only after it expanded into temperate, Nearctic habitats did Erethizon acquire the characteristic features that it is known for today. When combined with molecular estimates of divergence times, results suggest that Erethizon was ecologically similar to a larger species of Coendou when it crossed the Isthmus of Panama by the early Pleistocene. It is likely that the range of this more tropically adapted form was limited to a continuous forested biome that extended from South America through the Gulf Coast.


Subject(s)
Fossils , Porcupines , Porcupines/anatomy & histology , Animals , Fossils/anatomy & histology , South America , Tail/anatomy & histology , Extinction, Biological , North America , Biological Evolution , Ecosystem
2.
Nature ; 533(7602): 243-6, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27096364

ABSTRACT

New World monkeys (platyrrhines) are a diverse part of modern tropical ecosystems in North and South America, yet their early evolutionary history in the tropics is largely unknown. Molecular divergence estimates suggest that primates arrived in tropical Central America, the southern-most extent of the North American landmass, with several dispersals from South America starting with the emergence of the Isthmus of Panama 3-4 million years ago (Ma). The complete absence of primate fossils from Central America has, however, limited our understanding of their history in the New World. Here we present the first description of a fossil monkey recovered from the North American landmass, the oldest known crown platyrrhine, from a precisely dated 20.9-Ma layer in the Las Cascadas Formation in the Panama Canal Basin, Panama. This discovery suggests that family-level diversification of extant New World monkeys occurred in the tropics, with new divergence estimates for Cebidae between 22 and 25 Ma, and provides the oldest fossil evidence for mammalian interchange between South and North America. The timing is consistent with recent tectonic reconstructions of a relatively narrow Central American Seaway in the early Miocene epoch, coincident with over-water dispersals inferred for many other groups of animals and plants. Discovery of an early Miocene primate in Panama provides evidence for a circum-Caribbean tropical distribution of New World monkeys by this time, with ocean barriers not wholly restricting their northward movements, requiring a complex set of ecological factors to explain their absence in well-sampled similarly aged localities at higher latitudes of North America.


Subject(s)
Animal Migration , Fossils , Platyrrhini , Tropical Climate , Animals , Caribbean Region , Cebidae , Forests , History, Ancient , North America , Oceans and Seas , Panama , Phylogeny , Platyrrhini/anatomy & histology , Platyrrhini/classification
3.
Nature ; 457(7230): 715-7, 2009 Feb 05.
Article in English | MEDLINE | ID: mdl-19194448

ABSTRACT

The largest extant snakes live in the tropics of South America and southeast Asia where high temperatures facilitate the evolution of large body sizes among air-breathing animals whose body temperatures are dependant on ambient environmental temperatures (poikilothermy). Very little is known about ancient tropical terrestrial ecosystems, limiting our understanding of the evolution of giant snakes and their relationship to climate in the past. Here we describe a boid snake from the oldest known neotropical rainforest fauna from the Cerrejón Formation (58-60 Myr ago) in northeastern Colombia. We estimate a body length of 13 m and a mass of 1,135 kg, making it the largest known snake. The maximum size of poikilothermic animals at a given temperature is limited by metabolic rate, and a snake of this size would require a minimum mean annual temperature of 30-34 degrees C to survive. This estimate is consistent with hypotheses of hot Palaeocene neotropics with high concentrations of atmospheric CO(2) based on climate models. Comparison of palaeotemperature estimates from the equator to those from South American mid-latitudes indicates a relatively steep temperature gradient during the early Palaeogene greenhouse, similar to that of today. Depositional environments and faunal composition of the Cerrejón Formation indicate an anaconda-like ecology for the giant snake, and an earliest Cenozoic origin of neotropical vertebrate faunas.


Subject(s)
Body Size , Boidae/anatomy & histology , Fossils , Temperature , Tropical Climate , Animals , Atmosphere/chemistry , Biological Evolution , Body Temperature Regulation , Boidae/metabolism , Carbon Dioxide/analysis , Colombia , Energy Metabolism , History, Ancient
4.
Nature ; 434(7032): 497-501, 2005 Mar 24.
Article in English | MEDLINE | ID: mdl-15791254

ABSTRACT

Macroscelideans (elephant shrews or sengis) are small-bodied (25-540 g), cursorial (running) and saltatorial (jumping), insectivorous and omnivorous placental mammals represented by at least 15 extant African species classified in four genera. Macroscelidea is one of several morphologically diverse but predominantly African placental orders classified in the superorder Afrotheria by molecular phylogeneticists. The distribution of modern afrotheres, in combination with a basal position for Afrotheria within Placentalia and molecular divergence-time estimates, has been used to link placental diversification with the mid-Cretaceous separation of South America and Africa. Morphological phylogenetic analyses do not support Afrotheria and the fossil record favours a northern origin of Placentalia. Here we describe fossil postcrania that provide evidence for a close relationship between North American Palaeocene-Eocene apheliscine 'hyopsodontid' 'condylarths' (early ungulates or hoofed mammals) and extant Macroscelidea. Apheliscine postcranial morphology is consistent with a relationship to other ungulate-like afrotheres (Hyracoidea, Proboscidea) but does not provide support for a monophyletic Afrotheria. As the oldest record of an afrothere clade, identification of macroscelidean relatives in the North American Palaeocene argues against an African origin for Afrotheria, weakening support for linking placental diversification to the break-up of Gondwana.


Subject(s)
Fossils , Mammals/anatomy & histology , Mammals/classification , Phylogeny , Africa , Animals , Bone and Bones/anatomy & histology , History, Ancient , North America , South America , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL