Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 769
Filter
1.
Chin J Integr Med ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39240290

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder affecting multiple systems, characterized by the development of harmful autoantibodies and immune complexes that lead to damage in organs and tissues. Chinese medicine (CM) plays a role in mitigating complications, enhancing treatment effectiveness, and reducing toxicity of concurrent medications, and ensuring a safe pregnancy. However, CM mainly solves the disease comprehensively through multi-target and multi-channel regulation process, therefore, its treatment mechanism is often complicated, involving many molecular links. This review introduces the research progress of pathogenesis of SLE from the aspects of genetics, epigenetics, innate immunity and acquired immunity, and then discusses the molecular mechanism and target of single Chinese herbal medicine and prescription that are commonly used and effective in clinic to treat SLE.

2.
World J Otorhinolaryngol Head Neck Surg ; 10(3): 213-224, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39233861

ABSTRACT

Background: Eosinophilic extracellular traps (EETs) are reticular complexes comprising deoxyribonucleic-Acid (DNA) fibers and granule proteins. Aims: EETs play a crucial role in antimicrobial host responses and are pathogenic when overproduced or under degraded. EETs created by eosinophils appear to enable vital immune responses against extra-cellular pathogens, nevertheless, trap overproduction is evident in pathology. Materials & Methods: As considerably research is performed, new data affirmed that EETs can alter the outcome of respiratory ailment. Results: We probe into the disclosure and specificity of EETs produced in reaction to various stimuli and propose a role for those frameworks in ailment pathogenesis and the establishment of chronic, unresolved inflammation. Discussion: Whether EETs can be used as a prospective brand-new target for the diagnosis, treatment and prognosis of respiratory ailments is a scientific theme worth studying. Conclusion: We probe into the disclosure and specificity of EETs produced in reaction to various stimuli and propose a role for those frameworks in ailment pathogenesis and the establishment of chronic, unresolved inflammation.

3.
Environ Sci Ecotechnol ; 22: 100456, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39220681

ABSTRACT

The application of low-condensation diesel in cold regions with extremely low ambient temperatures (-14 to -29 °C) has enabled the operation of diesel vehicles. Still, it may contribute to heavy haze pollution in cold regions during winter. Here we examine pollutant emissions from low-condensation diesel in China. We measure the emissions of elemental carbon (EC), organic carbon (OC), and elements, including heavy metals such as arsenic (As). Our results show that low-condensation diesel increased EC and OC emissions by 2.5 and 2.6 times compared to normal diesel fuel, respectively. Indicators of vehicular sources, including EC, As, lead (Pb), cadmium (Cd), chromium (Cr), nickel (Ni), and manganese (Mn), increased by approximately 20.2-162.5% when using low-condensation diesel. Seasonal variation of vehicular source indicators, observed at road site ambient environments revealed the enhancement of PM2.5 pollution by the application of low-condensation diesel in winter. These findings suggest that -35# diesel, a low-cetane index diesel, may enhance air pollution in winter, according to a dynamometer test conducted in laboratory. It raises questions about whether higher emissions are released if -35# diesel is applied to running vehicles in real-world cold ambient environments.

4.
J Hazard Mater ; 478: 135468, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39151357

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) in high-latitude polar regions and the Tibetan Plateau have received widespread international attention. Here, we measured 18 PFASs and 11 major isomers in the lake water, sediment, and surrounding runoff of Lake Nam Co in 2020. The concentrations of ultrashort-chain trifluoroacetic acid (TFA) and perfluoropropanoic acid (PFPrA) and major isomers of perfluoooctanoic acid (PFOA) and perfluoooctane sulfonate acid (PFOS) in water bodies in high-latitude polar regions and the Tibetan Plateau are reported for the first time. The results showed that the concentration of ∑PFASs in glacial runoff was approximately 139 % greater than that in nonglacial runoff. The concentrations of ∑PFASs in the lake water and sediment in the southern lake with multiple glacial runoff events were approximately 113 % and 108 % higher, respectively, than those in the northern lake. The concentrations of short-chain perfluorobutanoic acid (PFBA) and ultrashort-chain TFA and PFPrA, which may be indicators of ice and snow melt, exhibited significant spatial heterogeneity. Overall, the spatial heterogeneity of PFAS concentrations in the water, sediment and surrounding runoff of Lake Nam Co may be caused mainly by glacial melting.

5.
Eur J Drug Metab Pharmacokinet ; 49(5): 645-655, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39158678

ABSTRACT

BACKGROUND AND OBJECTIVES: Smoothened (SMO), a key component of the hedgehog signaling pathway, represents a therapeutic target for triple negative breast cancer (TNBC), yet the chemotherapy response rate in TNBC patients is only 40-50%, underscoring the urgent need for the development of novel drugs to effectively treat this condition. The novel compound TPB15, an SMO inhibitor derived from [1,2,4] triazolo [4,3-α] pyridines, demonstrated superior anti-TNBC activity and lower toxicity compared to the first SMO inhibitor vismodegib in both in vitro and in vivo. However, the compound's pharmacokinetic properties remain unclear. The present work aims to develop a simple HPLC-MS/MS method to profile the pharmacokinetics and bioavailability of TPB15 in rats as a ground work for further clinical research. METHODS: Separation was performed on an Agilent ZORBAX StableBond C18 column by gradient elution using acetonitrile and 0.1% formic acid as mobile phase at a flow rate of 0.3 mL/min. Multiple reaction monitoring(MRM) in positive mode with the transitions of m/z 454.2 → 100.0, 248.1 → 121.1 was employed to determine TPB15 and internal standard tinidazole, respectively. The specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover of the method was validated. The pharmacokinetics and bioavailability  study of TPB15 were carried out on rats through intravenous injection at the dose of 5 mg/kg and oral gavage at the dose of 25 mg/kg, and the pharmacokinetics parameters were calculated by the non-compartment analysis using the pharmacokinetics software DAS 2.1.1. RESULTS: The values of specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover satisfied the acceptable limits. The lower limit of quantification of this method was 10 ng/mL with a linear range of 10-2000 ng/mL. The validated method was then applied to pharmacokinetics and bioavailability studies in rat by dosing with gavage (25 mg/kg) and intravenous injection(5 mg/kg), and the oral bioavailability of TBP15 in rat was calculated as 16.4 ± 3.5%. The pharmacokinetic parameters were calculated as following: maximum of plasma concentration (Cmax) (PO: 2787.17 ± 279.45 µg/L), Time to maximum plasma concentration (Tmax) (PO: 4.20 ± 0.90 h), the area under the concentration-time curve 0 to time (AUC0-t) (PO: 17,373.03 ± 2585.18 ng/mL·h, IV: 21,129.79 ± 3360.84 ng/mL·h), the area under the concentration-time curve 0 to infinity (AUC0-∞) (PO: 17,443.85 ± 2597.63 ng/mL·h, IV: 17,443.85 ± 2597.63 ng/mL·h), terminal elimination half-life (t1/2) (PO: 7.26 ± 2.16 h, IV: 4.78 ± 1.09 h). CONCLUSIONS: TPB15, a promising candidate for treating TNBC, has demonstrated outstanding efficacy and safety in vitro and in vivo. This study established a simple, sensitive, and rapid HPLC-MS/MS bioanalytical method, developed and validated in accordance with FDA and EMA guidelines, for conducting pharmacokinetic and bioavailability studies of TPB15. The results revealed a favorable pharmacokinetic profile owing to its long t1/2. Nevertheless, the next phase of research should include formulation screening to enhance bioavailability, as well as clinical trials, metabolism pathway analysis, and assessment of potential drug-drug interactions.


Subject(s)
Biological Availability , Pyridines , Rats, Sprague-Dawley , Smoothened Receptor , Tandem Mass Spectrometry , Triple Negative Breast Neoplasms , Animals , Triple Negative Breast Neoplasms/drug therapy , Rats , Female , Chromatography, High Pressure Liquid/methods , Smoothened Receptor/antagonists & inhibitors , Tandem Mass Spectrometry/methods , Pyridines/pharmacokinetics , Pyridines/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Administration, Oral , Liquid Chromatography-Mass Spectrometry
6.
Sci Total Environ ; 951: 175342, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117228

ABSTRACT

Synergistic reduction of air pollutants and carbon dioxide (CO2) emissions is currently a key environmental policy in China, yet provincial-level studies remain scarce. To fill the gap, this study developed a coupled emission inventory from 2013 to 2020 in Shanxi, a coal-dependent province critical to China's energy security. This facilitated the investigation of emission trends, primary sources, synergistic effects, and spatial distribution. The results show that, while air pollutant emissions decreased significantly during the study period, CO2 emissions increased slightly. The main emitters of SO2, NOx, and CO2 were identified as power, heating, industrial boilers, and residential coal combustion. The iron and steel industry contributed significantly to PM2.5 emissions, coke production to VOCs, and vehicles to NOx and VOCs. NH3 emissions were mainly attributed to fertilizer use and livestock. Synergistic reductions were evident in coal-related sources, especially industrial boilers and residential coal combustion, underlining the importance of optimizing the energy structure. Anthropogenic emissions were concentrated in basins with poor dispersion conditions. Taiyuan, Yuncheng, and Linfen emerged as key areas for synergistic reduction efforts. This study provides important insights for environmental policy development in Shanxi and other coal-dependent regions.

7.
J Gen Appl Microbiol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39135242

ABSTRACT

Naphthalene is a persistent environmental pollutant for its potential teratogenic, carcinogenic and mutagenic effects. In this study, 10 strains of bacteria capable of degrading naphthalene were isolated from crude-oil contaminated soil. Among them, Pseudomonas plecoglossicida 2P exhibited prominent growth with 1000 mg/L naphthalene as the sole carbon source and degraded 94.15% of naphthalene in 36 h. Whole genome sequencing analysis showed that P. plecoglossicida 2P had a total of 22 genes related to naphthalene degradation, of which 8 genes were related to the salicylic acid pathway only, 5 genes were related to the phthalic acid pathway only, 8 genes were common in both the salicylic acid and phthalic acid pathways, and 1 gene was related to the gentisic acid pathway. P. plecoglossicida 2P was applied in a two-phase partition bioreactor (TPPB) to degrade naphthalene in wastewater. The optimal operating conditions of the reactor were obtained through response surface optimization: initial naphthalene concentration (C0) =1600 mg/L, bacterial liquid concentration (OD600) = 1.3, and polymer-to-wastewater mass ratio (PWR) = 2%. Under these conditions, the naphthalene degradation rate was 98.36% at 24 h. The degradation kinetics were fitted using the Haldane equation with a high coefficient of determination (R2=0.94). The present study laid foundations for naphthalene degradation mechanism of genus Pseudomonas and its potential application in TPPB.

8.
Environ Sci Technol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028927

ABSTRACT

The insect Tenebrio molitor possesses an exceptional capacity for ultrafast plastic biodegradation within 1 day of gut retention, but the kinetics remains unknown. Herein, we investigated the biofragmentation and degradation kinetics of different microplastics (MPs), i.e., polyethylene (PE), poly(vinyl chloride) (PVC), and poly(lactic acid) (PLA), in T. molitor larvae. The intestinal reactions contributing to the in vivo MPs biodegradation were concurrently examined by utilizing aggregated-induced emission (AIE) probes. Our findings revealed that the intestinal biofragmentation rates essentially followed the order of PLA > PE > PVC. Notably, all MPs displayed retention effects in the intestine, with PVC requiring the longest duration for complete removal/digestion. The dynamic rate constant of degradable MPs (0.2108 h-1 for PLA) was significantly higher than that of persistent MPs (0.0675 and 0.0501 h-1 for PE and PVC, respectively) during the digestive gut retention. Surprisingly,T. molitor larvae instinctively modulated their internal digestive environment in response to in vivo biodegradation of various MP polymers. Esterase activity and intestinal acidification both significantly increased following MPs ingestion. The highest esterase and acidification levels were observed in the PLA-fed and PVC-fed larvae, respectively. High digestive esterase activity and relatively low acidification levels inT. molitor larvae may, to some extent, contribute to more efficient MPs removal within the plastic-degrading insect. This work provided important understanding of MPs biofragmentation and intestinal responses to in vivo MPs biodegradation in plastic-degrading insects.

9.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000427

ABSTRACT

The amyloid-beta peptide (Aß) is the neurotoxic component in senile plaques of Alzheimer's disease (AD) brains. Previously we have reported that Aß toxicity is mediated by the induction of sonic hedgehog (SHH) to trigger cell cycle re-entry (CCR) and apoptosis in post-mitotic neurons. Basella alba is a vegetable whose polysaccharides carry immunomodulatory and anti-cancer actions, but their protective effects against neurodegeneration have never been reported. Herein, we tested whether polysaccharides derived from Basella alba (PPV-6) may inhibit Aß toxicity and explored its underlying mechanisms. In differentiated rat cortical neurons, Aß25-35 reduced cell viability, damaged neuronal structure, and compromised mitochondrial bioenergetic functions, all of which were recovered by PPV-6. Immunocytochemistry and western blotting revealed that Aß25-35-mediated induction of cell cycle markers including cyclin D1, proliferating cell nuclear antigen (PCNA), and histone H3 phosphorylated at Ser-10 (p-Histone H3) in differentiated neurons was all suppressed by PPV-6, along with mitigation of caspase-3 cleavage. Further studies revealed that PPV-6 inhibited Aß25-35 induction of SHH; indeed, PPV-6 was capable of suppressing neuronal CCR and apoptosis triggered by the exogenous N-terminal fragment of sonic hedgehog (SHH-N). Our findings demonstrated that, in the fully differentiated neurons, PPV-6 exerts protective actions against Aß neurotoxicity via the downregulation of SHH to suppress neuronal CCR and apoptosis.


Subject(s)
Amyloid beta-Peptides , Apoptosis , Cell Cycle , Hedgehog Proteins , Neurons , Polysaccharides , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Hedgehog Proteins/metabolism , Animals , Neurons/drug effects , Neurons/metabolism , Apoptosis/drug effects , Rats , Polysaccharides/pharmacology , Polysaccharides/chemistry , Cell Cycle/drug effects , Peptide Fragments , Cell Survival/drug effects , Neuroprotective Agents/pharmacology
10.
J Proteome Res ; 23(8): 3294-3309, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39038167

ABSTRACT

Compared to advancements in single-cell proteomics, phosphoproteomics sensitivity has lagged behind due to low abundance, complex sample preparation, and substantial sample input requirements. We present a simple and rapid one-pot phosphoproteomics workflow (SOP-Phos) integrated with data-independent acquisition mass spectrometry (DIA-MS) for microscale phosphoproteomic analysis. SOP-Phos adapts sodium deoxycholate based one-step lysis, reduction/alkylation, direct trypsinization, and phosphopeptide enrichment by TiO2 beads in a single-tube format. By reducing surface adsorptive losses via utilizing n-dodecyl ß-d-maltoside precoated tubes and shortening the digestion time, SOP-Phos is completed within 3-4 h with a 1.4-fold higher identification coverage. SOP-Phos coupled with DIA demonstrated >90% specificity, enhanced sensitivity, lower missing values (<1%), and improved reproducibility (8%-10% CV). With a sample size-comparable spectral library, SOP-Phos-DIA identified 33,787 ± 670 to 22,070 ± 861 phosphopeptides from 5 to 0.5 µg cell lysate and 30,433 ± 284 to 6,548 ± 21 phosphopeptides from 50,000 to 2,500 cells. Such sensitivity enabled mapping key lung cancer signaling sites, such as EGFR autophosphorylation sites Y1197/Y1172 and drug targets. The feasibility of SOP-Phos-DIA was demonstrated on EGFR-TKI sensitive and resistant cells, revealing the interplay of multipathway Hippo-EGFR-ERBB signaling cascades underlying the mechanistic insight into EGFR-TKI resistance. Overall, SOP-Phos-DIA is an efficient and robust protocol that can be easily adapted in the community for microscale phosphoproteomic analysis.


Subject(s)
Phosphopeptides , Phosphoproteins , Proteomics , Workflow , Proteomics/methods , Humans , Phosphopeptides/analysis , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Phosphoproteins/metabolism , Phosphoproteins/analysis , Phosphoproteins/chemistry , Reproducibility of Results , ErbB Receptors/metabolism , Cell Line, Tumor , Phosphorylation , Titanium/chemistry , Lung Neoplasms/metabolism , Mass Spectrometry/methods
11.
Toxics ; 12(7)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39058150

ABSTRACT

China has identified the synergistic reduction of pollution and carbon emissions as a crit ical component of its environmental protection and climate mitigation efforts. An assessment of this synergy can provide clarity on the strategic management of both air pollution and carbon emissions. Due to the extensive regional differences in China, the spatial effects of influencing factors on this synergy exhibit variation across different provinces. In this study, the reduction indexes of PM2.5 and CO2 were calculated based on their reduction bases, reduction efforts, and reduction stabilities across provinces. Then, the synergistic reduction effect was assessed using an exponential function with the PM2.5 reduction index as the base and the CO2 reduction index as the exponent. Next, the MGWR model was applied in order to analyze the influencing factors of the synergistic reduction effect, considering natural settings, socioeconomic conditions, and external emission impacts. Finally, the k-means clustering method was utilized to classify provinces into different categories based on the degree of impact of each influencing factor. The results indicated that air circulation, vegetation, tertiary industry ratio, and emission reduction efficiency are major impact indicators that have a positive effect. The topography and emissions from neighboring provinces have a statistically significant negative impact. The spatial influences of different factors exhibit a distribution trend characterized by a high-high cluster and a low-low cluster. A total of 31 provinces are divided into three categories, and suggestions on the corresponding category are proposed, to provide a scientific reference to the synergistic reduction of PM2.5 and CO2.

12.
Am J Transl Res ; 16(5): 1669-1677, 2024.
Article in English | MEDLINE | ID: mdl-38883363

ABSTRACT

OBJECTIVE: This study aimed to identify risk factors associated with incision complications following the modified "L" approach for calcaneal fractures. METHODS: Data from 100 patients treated with the modified "L" approach for calcaneal fractures between January 2018 and December 2021 were analyzed. These included 52 cases in the poorly healing group and 48 in the well-healing group. Variables such as patient age, sex, body mass index, fracture type (Sanders classification), smoking history, alcohol consumption, diabetes status, timing of surgery, tourniquet use, bone grafting, suture method, and postoperative incision care were evaluated. A nomogram was developed using R software to predict the risk of incision complications, validated through the area under the ROC curve, C-index, and decision curve analysis. RESULTS: Both univariate and multivariate regression analyses identified fracture type, smoking history, diabetes, timing of surgery, and duration of tourniquet application as significant predictors of incision complications. These factors were incorporated into a clinical predictive nomogram. The nomogram's calibration curves demonstrated high accuracy, both internally and externally. The unadjusted concordance indes (C-index) was 0.793 [95% confidence interval (CI), 0.825-0.995], and the area under the curve for the nomogram was 0.7875882. Decision curve analysis confirmed the clinical applicability of the model at a threshold probability of 20-60%. CONCLUSION: We have developed a reliable clinical nomogram to predict the risk factors for incision complications in the modified "L" approach for calcaneal fractures, enhancing decision-making in clinical settings.

13.
Environ Sci Technol ; 58(27): 11887-11900, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38885123

ABSTRACT

The detrimental effects of plastics on aquatic organisms, including those of macroplastics, microplastics, and nanoplastics, have been well established. However, knowledge on the interaction between plastics and terrestrial insects is limited. To develop effective strategies for mitigating the impact of plastic pollution on terrestrial ecosystems, it is necessary to understand the toxicity effects and influencing factors of plastic ingestion by insects. An overview of current knowledge regarding plastic ingestion by terrestrial insects is provided in this Review, and the factors influencing this interaction are identified. The pathways through which insects interact with plastics, which can lead to plastic accumulation and microplastic transfer to higher trophic levels, are also discussed using an overview and a conceptual model. The diverse impacts of plastic exposure on insects are discussed, and the challenges in existing studies, such as a limited focus on certain plastic types, are identified. Further research on standardized methods for sampling and analysis is crucial for reliable research, and long-term monitoring is essential to assess plastic trends and ecological impacts in terrestrial ecosystems. The mechanisms underlying these effects need to be uncovered, and their potential long-term consequences for insect populations and ecosystems require evaluation.


Subject(s)
Insecta , Microplastics , Animals , Microplastics/toxicity , Insecta/drug effects , Plastics/toxicity , Ecosystem , Environmental Monitoring
14.
J Transl Med ; 22(1): 586, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902782

ABSTRACT

The prevalence of papillary thyroid cancer (PTC) has been rising in recent years. Despite its relatively low mortality, PTC frequently metastasizes to lymph nodes and often recurs, posing significant health and economic burdens. The role of iodine in the pathogenesis and advancement of thyroid cancer remains poorly understood. Circular RNAs (circRNAs) are recognized to function as competing endogenous RNAs (ceRNAs) that modulate gene expression and play a role in various cancer stages. Consequently, this research aimed to elucidate the mechanism by which circRNA influences the impact of iodine on PTC. Our research indicates that high iodine levels can exacerbate the malignancy of PTC via the circ_0004851/miR-296-3p/FGF11 axis. These insights into iodine's biological role in PTC and the association of circRNA with the disease could pave the way for novel biomarkers and potentially effective therapeutic strategies to mitigate PTC progression.


Subject(s)
Gene Expression Regulation, Neoplastic , Iodine , MicroRNAs , RNA, Circular , Thyroid Cancer, Papillary , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Iodine/metabolism , Cell Line, Tumor , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Base Sequence
15.
Environ Sci Technol ; 58(23): 10368-10377, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38814143

ABSTRACT

The insect Tenebrio molitor exhibits ultrafast efficiency in biodegrading polystyrene (PS). However, the generation and fate of nanoplastics (NPs) in the intestine during plastic biodegradation remain unknown. In this study, we investigated the biodegradation of PS microplastics (MPs) mediated by T. molitor larvae over a 4-week period and confirmed biodegradation by analyzing Δδ13C in the PS before and after biotreatment (-28.37‰ versus -24.88‰) as an effective tool. The ·OH radicals, primarily contributed by gut microbiota, and H2O2, primarily produced by the host, both increased after MP digestion. The size distribution of residual MP particles in excrements fluctuated within the micrometer ranges. PS NPs were detected in the intestine but not in the excrements. At the end of Weeks 1, 2, 3, and 4, the concentrations of PS NPs in gut tissues were 3.778, 2.505, 2.087, and 2.853 ng/lava, respectively, while PS NPs in glands were quantified at 0.636, 0.284, and 0.113 ng/lava and eventually fell below the detection limit. The PS NPs in glands remained below the detection limit at the end of Weeks 5 and 6. This indicates that initially, NPs generated in the gut entered glands, then declined gradually and eventually disappeared or possibly biodegraded after Week 4, associated with the elevated plastic-degrading capacities of T. molitor larvae. Our findings unveil rapid synergistic MP biodegradation by the larval host and gut microbiota, as well as the fate of generated NPs, providing new insights into the risks and fate associated with NPs during invertebrate-mediated plastic biodegradation.


Subject(s)
Biodegradation, Environmental , Larva , Microplastics , Polystyrenes , Tenebrio , Animals , Microplastics/metabolism , Tenebrio/metabolism , Larva/metabolism , Plastics/metabolism , Gastrointestinal Microbiome
16.
Water Res ; 259: 121841, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38820734

ABSTRACT

The toxicity of microplastics (MPs) on freshwater plants has been widely studied, yet the influence of aged MPs remains largely unexplored. Herein, we investigated the influence of polyvinyl chloride (PVC) MPs, both before and after aging, at different environmentally relevant concentrations on Chlorella pyrenoidosa, a freshwater microalgae species widely recognized as a valuable biomass resource. During a 96-h period, both virgin and aged MPs hindered the growth of C. pyrenoidosa. The maximum growth inhibition rates were 32.40 % for virgin PVC at 250 mg/L and 44.72 % for aged PVC at 100 mg/L, respectively. Microalgae intracellular materials, i.e., protein and carbohydrate contents, consistently decreased after MP exposure, with more pronounced inhibition observed with aged PVC. Meanwhile, the MP aging significantly promoted the nitrogen uptake of C. pyrenoidosa, i.e., 1693.45 ± 42.29 mg/L (p < 0.01), contributing to the production of humic acid-like substances. Additionally, aged PVC induced lower chlorophyll a and Fv/Fm when compared to virgin PVC, suggesting a more serious inhibition of the photosynthesis process of microalgae. The toxicity of MPs to C. pyrenoidosa was strongly associated with intercellular oxidative stress levels. The results indicate that MP aging exacerbates the damage to photosynthetic performance and bioenergy production in microalgae, providing critical insights into the toxicity analysis of micro(nano)plastics on freshwater plants.


Subject(s)
Chlorella , Microalgae , Microplastics , Photosynthesis , Photosynthesis/drug effects , Chlorella/drug effects , Microalgae/drug effects , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Biomass , Chlorophyll/metabolism
17.
Am J Prev Med ; 67(3): 339-349, 2024 09.
Article in English | MEDLINE | ID: mdl-38697323

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC) remains a significant public health concern. This study aims to provide a comprehensive understanding of the effectiveness of fecal immunochemical test (FIT) screening on CRC incidence and mortality, leveraging the scale of over 1.5 million randomly selected Taiwanese and more than 11.7 million person-years of follow-up. METHODS: This prospective cohort study merges data from 3 robust Taiwanese health databases: the CRC screening program, cancer registration, and death registration databases. Incidence and mortality rates of CRC were calculated based on age, sex, urbanization, and past screening status. Cox proportional hazard models were used to assess the association between screening statuses and CRC incidence or mortality, adjusting for age, sex, and urbanization levels. Statistical analysis of the data was conducted in 2021-2022. RESULTS: FIT screening was associated with a 33% reduction in CRC incidence and a 47% reduction in mortality. The study identified a dose-response relationship between the fecal hemoglobin concentration (f-HbC) levels and CRC risk. Participants with consistent FIT-negative results had significantly reduced CRC incidence and mortality risks, while those with one or more positive FIT results faced increased risks. Notably, compliance with follow-up examinations after a positive FIT significantly lowered mortality risk. CONCLUSIONS: This large-scale study validates the efficacy of FIT screening in reducing CRC incidence and mortality. It offers a nuanced understanding of how various screening statuses impact CRC risks, thus providing valuable insights for public health strategies aimed at CRC prevention.


Subject(s)
Colorectal Neoplasms , Early Detection of Cancer , Occult Blood , Humans , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/prevention & control , Colorectal Neoplasms/epidemiology , Taiwan/epidemiology , Male , Female , Middle Aged , Early Detection of Cancer/statistics & numerical data , Early Detection of Cancer/methods , Aged , Incidence , Prospective Studies , Mass Screening/statistics & numerical data , Mass Screening/methods , Proportional Hazards Models
18.
J Allergy Clin Immunol ; 154(3): 644-656, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38761998

ABSTRACT

BACKGROUND: Previous studies implied that local M2 polarization of macrophage promoted mucosal edema and exacerbated TH2 type inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP). However, the specific pathogenic role of M2 macrophages and the intrinsic regulators in the development of CRS remains elusive. OBJECTIVE: We sought to investigate the regulatory role of SIRT5 in the polarization of M2 macrophages and its potential contribution to the development of CRSwNP. METHODS: Real-time reverse transcription-quantitative PCR and Western blot analyses were performed to examine the expression levels of SIRT5 and markers of M2 macrophages in sinonasal mucosa samples obtained from both CRS and control groups. Wild-type and Sirt5-knockout mice were used to establish a nasal polyp model with TH2 inflammation and to investigate the effects of SIRT5 in macrophage on disease development. Furthermore, in vitro experiments were conducted to elucidate the regulatory role of SIRT5 in polarization of M2 macrophages. RESULTS: Clinical investigations showed that SIRT5 was highly expressed and positively correlated with M2 macrophage markers in eosinophilic polyps. The expression of SIRT5 in M2 macrophages was found to contribute to the development of the disease, which was impaired in Sirt5-deficient mice. Mechanistically, SIRT5 was shown to enhance the alternative polarization of macrophages by promoting glutaminolysis. CONCLUSIONS: SIRT5 plays a crucial role in promoting the development of CRSwNP by supporting alternative polarization of macrophages, thus providing a potential target for CRSwNP interventions.


Subject(s)
Macrophages , Mice, Knockout , Nasal Polyps , Rhinitis , Sinusitis , Sirtuins , Animals , Sinusitis/immunology , Sinusitis/pathology , Sinusitis/genetics , Humans , Chronic Disease , Macrophages/immunology , Macrophages/metabolism , Sirtuins/genetics , Sirtuins/metabolism , Mice , Rhinitis/immunology , Rhinitis/pathology , Rhinitis/genetics , Nasal Polyps/immunology , Nasal Polyps/pathology , Male , Female , Adult , Middle Aged , Eosinophilia/immunology , Macrophage Activation/immunology , Macrophage Activation/genetics , Mice, Inbred C57BL , Eosinophils/immunology , Th2 Cells/immunology , Rhinosinusitis
19.
Biomolecules ; 14(4)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38672405

ABSTRACT

Curcumae Rhizoma, a traditional Chinese medicine with a wide range of pharmacological activities, is obtained from the dried rhizomes of Curcuma phaeocaulis VaL., Curcuma kwangsiensis S. G. Lee et C. F. Liang, and Curcuma wenyujin Y. H. Chen et C. Ling. Sesquiterpenoids and curcuminoids are found to be the main constituents of Curcumae Rhizoma. Sesquiterpenoids are composed of three isoprene units and are susceptible to complex transformations, such as cyclization, rearrangement, and oxidation. They are the most structurally diverse class of plant-based natural products with a wide range of biological activities and are widely found in nature. In recent years, scholars have conducted abundant studies on the structures and pharmacological properties of components of Curcumae Rhizoma. This article elucidates the chemical structures, medicinal properties, and biological properties of the sesquiterpenoids (a total of 274 compounds) isolated from Curcumae Rhizoma. We summarized extraction and isolation methods for sesquiterpenoids, established a chemical component library of sesquiterpenoids in Curcumae Rhizoma, and analyzed structural variances among sesquiterpenoids sourced from Curcumae Rhizoma of diverse botanical origins. Furthermore, our investigation reveals a diverse array of sesquiterpenoid types, encompassing guaiane-type, germacrane-type, eudesmane-type, elemane-type, cadinane-type, carane-type, bisabolane-type, humulane-type, and other types, emphasizing the relationship between structural diversity and activity. We hope to provide a valuable reference for further research and exploitation and pave the way for the development of new drugs derived from medicinal plants.


Subject(s)
Curcuma , Rhizome , Sesquiterpenes , Curcuma/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Rhizome/chemistry , Humans , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology
20.
J Hazard Mater ; 471: 134383, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38669930

ABSTRACT

This study carried out the atmospheric and precipitation observation in Beijing for nearly one year, and firstly simultaneously observed the pollution characteristics of PFASs and their main isomers, focusing on their gas-particle partitioning mechanism and dry and wet deposition characteristics. After deducting PFASs in the aqueous phase of particulate matter, the gas-particle partitioning coefficients (-7.04 to -5.49) were about 3-4 units smaller than before (-2.77 to -1.51), and all were smaller than 0, which indicated that each PFAS and isomer were more distributed in the gas phase. Dry deposition was dominant in the atmospheric deposition of each PFAS and isomer with relative contribution of 66 ± 17%, but the relative contribution of dry deposition was significantly different. It was found that the gas-particle partitioning coefficient can be influenced by key chemical structures such as carbon chain length, functional group type, and isomer structure. Furthermore, the gas-particle partitioning can influence the dry and wet deposition of PFASs. Specifically, PFASs with longer carbon chains, carboxylic acid functional group (compared to sulfonic acid functional group) or PFOA branched chain structures had larger gas-particle partitioning coefficients and can be more distributed in the hydrophobic phase of particulate matter, and their relative contributions of dry deposition were smaller.

SELECTION OF CITATIONS
SEARCH DETAIL