Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Inorg Chem ; 47(2): 645-55, 2008 Jan 21.
Article in English | MEDLINE | ID: mdl-18078337

ABSTRACT

A one-pot synthetic procedure yields the octanuclear Fe(III) complexes Fe(8)(micro(4-)O)(4)(micro-pz(*))(12)X(40, where X = Cl and pz(*) = pyrazolate anion (pz = C(3)H(3)N(2)-) (1), 4-Cl-pz (2), and 4-Me-pz (3) or X = Br and pz(*) = pz (4). The crystal structures of complexes 1-4, determined by X-ray diffraction, show an Fe(4)O(4)-cubane core encapsulated in a shell composed of four interwoven Fe(micro-pz(*))(3)X units. Complexes 1-4 have been characterized by 1H NMR, infrared, and Raman spectroscopies. Mössbauer spectroscopic analysis distinguishes the cubane and outer Fe(III) centers by their different isomer shift and quadrupole splitting values. Electrochemical analyses by cyclic voltammetry show four consecutive, closely spaced, reversible reduction processes for each of the four complexes. Magnetic susceptibility studies, corroborated by density functional theory calculations, reveal weak antiferromagnetic coupling among the four cubane Fe centers and strong antiferromagnetic coupling between cubane and outer Fe atoms of 1. The structural similarity between the antiferromagnetic Fe(8)(micro(4-)O)(4) core of 1-4 and the antiferromagnetic units contained in the minerals ferrihydrite and maghemite is demonstrated by X-ray and Mössbauer data.


Subject(s)
Ferric Compounds/chemistry , Crystallography, X-Ray , Ferric Compounds/chemical synthesis , Magnetic Resonance Spectroscopy , Models, Molecular , Oxidation-Reduction , Spectrophotometry, Infrared , Spectroscopy, Mossbauer
2.
Inorg Chem ; 46(26): 10981-9, 2007 Dec 24.
Article in English | MEDLINE | ID: mdl-18044951

ABSTRACT

A comparison is made between the structural, spectroscopic, electrochemical, and magnetic properties of pyrazolate versus carboxylate complexes [Fe3(mu3(mu3O)(mu-LL)6Cl3]2- containing the Fe3(mu3-O)-motif. While the Fe3(mu3-O)-cores are structurally indistinguishable in the two types of complexes, their magnetic properties deviate from the expected values as a result of a through-pyrazole contribution to the overall antiferromagnetic exchange with J1/hc = -80.1 cm(-1) and J2/hc = -72.4 cm(-1), or J1/hc = 70.6 cm(-1) and J2/hc = -80.8 cm(-1), (Hex = -J1(S1S2 + S2S3) - J2S1S3). The magnetic properties of the pyrazolate complexes are further tuned by an antisymmetric exchange interaction term.


Subject(s)
Ferric Compounds/chemistry , Magnetics , Oxygen/chemistry , Pyrazoles/chemistry , Crystallography, X-Ray , Electrochemistry , Models, Molecular , Spectrophotometry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL