Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1399256, 2024.
Article in English | MEDLINE | ID: mdl-38818504

ABSTRACT

Background: It is well known that metabolic disorders, including type 1 diabetes (T1D), are often associated with reduced male fertility, mainly increasing oxidative stress and impairing the hypothalamus-pituitary-testis (HPT) axis, with consequently altered spermatogenesis and reduced sperm parameters. Herein, using a rat model of T1D obtained by treatment with streptozotocin (STZ), we analyzed several parameters of testicular activity. Methods: A total of 10 adult male Wistar rats were divided into two groups of five: control and T1D, obtained with a single intraperitoneal injection of STZ. After 3 months, the rats were anesthetized and sacrificed; one testis was stored at -80°C for biochemical analysis, and the other was fixed for histological and immunofluorescence analysis. Results: The data confirmed that T1D induced oxidative stress and, consequently, alterations in both testicular somatic and germ cells. This aspect was highlighted by enhanced apoptosis, altered steroidogenesis and Leydig cell maturity, and impaired spermatogenesis. In addition, the blood-testis barrier integrity was compromised, as shown by the reduced levels of structural proteins (N-cadherin, ZO-1, occludin, connexin 43, and VANGL2) and the phosphorylation status of regulative kinases (Src and FAK). Mechanistically, the dysregulation of the SIRT1/NRF2/MAPKs signaling pathways was proven, particularly the reduced nuclear translocation of NRF2, affecting its ability to induce the transcription of genes encoding for antioxidant enzymes. Finally, the stimulation of testicular inflammation and pyroptosis was also confirmed, as highlighted by the increased levels of some markers, such as NF-κB and NLRP3. Conclusion: The combined data allowed us to confirm that T1D has detrimental effects on rat testicular activity. Moreover, a better comprehension of the molecular mechanisms underlying the association between metabolic disorders and male fertility could help to identify novel targets to prevent and treat fertility disorders related to T1D.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Rats, Wistar , Testis , Animals , Male , Rats , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Testis/metabolism , Testis/pathology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Spermatogenesis , Signal Transduction , Germ Cells/metabolism , Spermatozoa/metabolism
2.
Brain Behav Immun ; 119: 408-415, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636564

ABSTRACT

Vestibulodynia is a complex pain disorder characterized by chronic discomfort in the vulvar region, often accompanied by tactile allodynia and spontaneous pain. In patients a depressive behaviour is also observed. In this study, we have used a model of vestibulodynia induced by complete Freund's adjuvant (CFA) focusing our investigation on the spinal cord neurons and microglia. We investigated tactile allodynia, spontaneous pain, and depressive-like behavior as key behavioral markers of vestibulodynia. In addition, we conducted in vivo electrophysiological recordings to provide, for the first time to our knowledge, the characterization of the spinal sacral neuronal activity in the L6-S1 dorsal horn of the spinal cord. Furthermore, we examined microglia activation in the L6-S1 dorsal horn using immunofluorescence, unveiling hypertrophic phenotypes indicative of neuroinflammation in the spinal cord. This represents a novel insight into the role of microglia in vestibulodynia pathology. To address the therapeutic aspect, we employed pharmacological interventions using GABApentin, amitriptyline, and PeaPol. Remarkably, all three drugs, also used in clinic, showed efficacy in alleviating tactile allodynia and depressive-like behavior. Concurrently, we also observed a normalization of the altered neuronal firing and a reduction of microglia hypertrophic phenotypes. In conclusion, our study provides a comprehensive understanding of the CFA-induced model of vestibulodynia, encompassing behavioral, neurophysiological and neuroinflammatory aspects. These data pave the way to investigate spinal cord first pain plasticity in vestibulodynia.


Subject(s)
Disease Models, Animal , Freund's Adjuvant , Hyperalgesia , Microglia , Neurons , Spinal Cord , Vulvodynia , Animals , Spinal Cord/metabolism , Spinal Cord/physiopathology , Mice , Hyperalgesia/physiopathology , Hyperalgesia/metabolism , Vulvodynia/physiopathology , Vulvodynia/metabolism , Female , Microglia/metabolism , Neurons/metabolism , Neuroinflammatory Diseases/physiopathology , Gabapentin/pharmacology , Amitriptyline/pharmacology , Depression/physiopathology , Depression/metabolism , Mice, Inbred C57BL
3.
Biomed Pharmacother ; 175: 116600, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670046

ABSTRACT

There is a growing evidence suggesting the association of vitamin D deficiency (VDD) and cognitive impairment. In this study we evaluated the possible involvement of gut microbiota in the cognitive impairments mediated by VDD and investigated the effects of pharmacological treatment with the oxazoline derivative of the aliamide palmitoylethanolamide, 2-Pentadecyl-2-oxazoline (PEA-OXA). Mice were submitted to behavioural, biochemical and electrophysiological analysis to assess whether their vitamin D status affected cognitive performance together with gut microbiota composition. In VDD mice we found cognitive malfunctioning associated with reduced neuroplasticity, indicated by impaired long term potentiation, and neuroinflammation at the hippocampal level. Importantly, PEA-OXA counteracted the cognitive impairments and modified the biochemical and functional changes induced by VDD. Additionally, PEA-OXA treatment enhanced gut microbiota diversity, which tended to be decreased by VDD only in female mice, elevated the relative abundance of lactic and butyric acid-producing families, i.e. Aerococcaceae and Butyricicoccaceae, and reversed the VDD-induced decrease of butyrate-producing beneficial genera, such as Blautia in female mice, and Roseburia in male mice. These data provide novel insights for a better understanding of the cognitive decline induced by VDD and related gut dysbiosis and its potential therapeutic treatment.


Subject(s)
Cognitive Dysfunction , Gastrointestinal Microbiome , Vitamin D Deficiency , Animals , Gastrointestinal Microbiome/drug effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Male , Female , Mice , Vitamin D Deficiency/complications , Vitamin D Deficiency/drug therapy , Hippocampus/drug effects , Hippocampus/metabolism , Mice, Inbred C57BL , Ethanolamines/pharmacology , Ethanolamines/metabolism , Dysbiosis , Amides/pharmacology , Cognition/drug effects , Disease Models, Animal
5.
bioRxiv ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38260426

ABSTRACT

Knowing the site of drug action is important to optimize effectiveness and address any side effects. We used light-sensitive drugs to identify the brain region-specific role of mGlu5 metabotropic glutamate receptors in the control of pain. Optical activation of systemic JF-NP-26, a caged, normally inactive, negative allosteric modulator (NAM) of mGlu5 receptors, in cingulate, prelimbic and infralimbic cortices and thalamus inhibited neuropathic pain hypersensitivity. Systemic treatment of alloswitch-1, an intrinsically active mGlu5 receptor NAM, caused analgesia, and the effect was reversed by light-induced drug inactivation in in the prelimbic and infralimbic cortices, and thalamus. This demonstrates that mGlu5 receptor blockade in the medial prefrontal cortex and thalamus is both sufficient and necessary for the analgesic activity of mGlu5 receptor antagonists. Surprisingly, when light was delivered in the basolateral amygdala, local activation of systemic JF-NP-26 reduced pain thresholds, whereas inactivation of alloswitch-1 enhanced analgesia. Electrophysiological analysis showed that alloswitch-1 increased excitatory synaptic responses in prelimbic pyramidal neurons evoked by stimulation of BLA input, and decreased feedforward inhibition of amygdala output neurons by BLA. Both effects were reversed by optical silencing and reinstated by optical reactivation of alloswitch-1. These findings demonstrate for the first time that the action of mGlu5 receptors in the pain neuraxis is not homogenous, and suggest that blockade of mGlu5 receptors in the BLA may limit the overall analgesic activity of mGlu5 receptor antagonists. This could explain the suboptimal effect of mGlu5 NAMs on pain in human studies and validate photopharmacology as an important tool to determine ideal target sites for systemic drugs.

6.
Curr Neuropharmacol ; 22(8): 1327-1343, 2024.
Article in English | MEDLINE | ID: mdl-38279738

ABSTRACT

Diabetes and related acute and long-term complications have a profound impact on cognitive, emotional, and social behavior, suggesting that the central nervous system (CNS) is a crucial substrate for diabetic complications. When anxiety, depression, and cognitive deficits occur in diabetic patients, the symptoms and complications related to the disease worsen, contributing to lower quality of life while increasing health care costs and mortality. Experimental models of diabetes in rodents are a fundamental and valuable tool for improving our understanding of the mechanisms underlying the close and reciprocal link between diabetes and CNS alterations, including the development of affective and cognitive disorders. Such models must reproduce the different components of this pathological condition in humans and, therefore, must be associated with affective and cognitive behavioral alterations. Beyond tight glycemic control, there are currently no specific therapies for neuropsychiatric comorbidities associated with diabetes; animal models are, therefore, essential for the development of adequate therapies. To our knowledge, there is currently no review article that summarizes changes in affective and cognitive behavior in the most common models of diabetes in rodents. Therefore, in this review, we have reported the main evidence on the alterations of affective and cognitive behavior in the different models of diabetes in rodents, the main mechanisms underlying these comorbidities, and the applicable therapeutic strategy.


Subject(s)
Cognitive Dysfunction , Animals , Cognitive Dysfunction/etiology , Disease Models, Animal , Diabetes Mellitus, Experimental/complications , Rodentia , Mood Disorders/etiology , Humans
8.
Curr Neuropharmacol ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38073106

ABSTRACT

BACKGROUND: Integrins, important extracellular matrix (ECM) receptor proteins, are affected by inflammation and can participate in the maintenance of many painful conditions. Although they are ubiquitous and changeable across all cell types, the roles of these cell adhesion molecules in pathological pain have not been fully explored. OBJECTIVE: We evaluated the effects of the subcutaneous injection of lebecetin, a C-type lectin isolated from Macrovipera lebetina snake venom, previously reported to inhibit α5ß1 and αv integrin activity, on different components of inflammation induced by the formalin administration in the hind paw of mice. METHODS: The formalin-induced nocifensive behavior, edema, and histopathological changes in the hind paw associated with cytokine, iNOS, and COX2 expression, nociceptive-specific neuron activity, and microglial activation analysis in the spinal cord were evaluated in mice receiving vehicle or lebecetin pretreatment. RESULTS: Lebecetin inhibited the nocifensive responses in the formalin test, related edema, and cell infiltration in the injected paw in a biphasic, hormetic-like, and dose-dependent way. According to that hormetic trend, a reduction in pro-inflammatory cytokines IL-6, IL-8, and TNF-alpha and upregulation of the anti-inflammatory cytokine IL-10 in the spinal cord were found with the lowest doses of lebecetin. Moreover, COX2 and iNOS expression in serum and spinal cord followed the same biphasic pattern of cytokines. Finally, nociceptive neurons sensitization and activated microglia were normalized in the dorsal horn of the spinal cord by lebecetin. CONCLUSION: These findings implicate specific roles of integrins in inflammation and tonic pain, as well as in the related central nervous system sequelae.

9.
Biomolecules ; 13(12)2023 12 16.
Article in English | MEDLINE | ID: mdl-38136672

ABSTRACT

Chronic neuropathic pain (NP) is an increasingly prevalent disease and leading cause of disability which is challenging to treat. Several distinct classes of drugs are currently used for the treatment of chronic NP, but each drug targets only narrow components of the underlying pathophysiological mechanisms, bears limited efficacy, and comes with dose-limiting side effects. Multimodal therapies have been increasingly proposed as potential therapeutic approaches to target the multiple mechanisms underlying nociceptive transmission and modulation. However, while preclinical studies with combination therapies showed promise to improve efficacy over monotherapy, clinical trial data on their efficacy in specific populations are lacking and increased risk for adverse effects should be carefully considered. Drug-drug co-crystallization has emerged as an innovative pharmacological approach which can combine two or more different active pharmaceutical ingredients in a single crystal, optimizing pharmacokinetic and physicochemical characteristics of the native molecules, thus potentially capitalizing on the synergistic efficacy between classes of drugs while simplifying adherence and minimizing the risk of side effects by reducing the doses. In this work, we review the current pharmacological options for the treatment of chronic NP, focusing on combination therapies and their ongoing developing programs and highlighting the potential of co-crystals as novel approaches to chronic NP management.


Subject(s)
Neuralgia , Humans , Neuralgia/drug therapy , Drug Therapy, Combination , Combined Modality Therapy
10.
Int J Mol Sci ; 24(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37762702

ABSTRACT

Transient global amnesia, both persistent and transient, is a very common neuropsychiatric syndrome. Among animal models for amnesia and testing new drugs, the scopolamine test is the most widely used for transient global amnesia (TGA). This study examined the scopolamine-induced deficits in working memory, discriminative memory, anxiety, and motor activity in the presence of intranasal PEA-OXA, a dual antagonist of presynaptic α2 and H3 receptors. Male C57BL/6 mice were treated with intraperitoneal scopolamine (1 mg/kg) with or without pre-treatment (15 min) or post-treatment (15 min) with intranasal PEA-OXA (10 mg/kg). It was seen that scopolamine induced deficits of discriminative and spatial memory and motor deficit. These changes were associated with a loss of synaptic plasticity in the hippocampal dentate gyrus: impaired LTP after lateral entorhinal cortex/perforant pathway tetanization. Furthermore, hippocampal Ach levels were increased while ChA-T expression was reduced following scopolamine administration. PEA-OXA either prevented or restored the scopolamine-induced cognitive deficits (discriminative and spatial memory). However, the same treatment did not affect the altered motor activity or anxiety-like behavior induced by scopolamine. Consistently, electrophysiological analysis showed LTP recovery in the DG of the hippocampus, while the Ach level and ChoA-T were normalized. This study confirms the neuroprotective and pro-cognitive activity of PEA-OXA (probably through an increase in the extracellular levels of biogenic amines) in improving transient memory disorders for which the available pharmacological tools are obsolete or inadequate and not directed on specific pathophysiological targets.

11.
J Exp Zool A Ecol Integr Physiol ; 339(10): 915-924, 2023 12.
Article in English | MEDLINE | ID: mdl-37522474

ABSTRACT

Using a rat model of type 1 diabetes (T1D) obtained by treatment with streptozotocin, an antibiotic that destroys pancreatic ß-cells, we evaluated the influence of subsequent hyperglycemia on the morphology and physiology of the Harderian gland (HG). HG is located in the medial corner of the orbit of many terrestrial vertebrates and, in rodents, is characterized by the presence of porphyrins, which being involved in the phototransduction, through photo-oxidation, produce reactive oxygen species activating the autophagy pathway. The study focused on the expression of some morphological markers involved in cell junction formation (occludin, connexin-43, and α-tubulin) and mast cell number (MCN), as well as autophagic and apoptotic pathways. The expression of enzymes involved in steroidogenesis [steroidogenic acute regulatory protein (StAR), and 3ß-hydroxysteroid dehydrogenase (3ß-HSD)] and the level of lipid peroxidation by thiobarbituric acid reactive species assay were also evaluated. The results strongly indicate, for the first time, that T1D has a negative impact on the pathophysiology of rat HG, as evidenced by increased oxidative stress, morphological and biochemical alterations, hyperproduction and secretion of porphyrins, increased MCN, reduced protein levels of StAR and 3ß-HSD, and, finally, induced autophagy and apoptosis. All the combined data support the use of the rat HG as a suitable experimental model to elucidate the molecular damage/survival pathways elicited by stress conditions.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Harderian Gland , Porphyrins , Animals , Rats , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Harderian Gland/metabolism , Porphyrins/adverse effects , Porphyrins/metabolism , Streptozocin/adverse effects , Streptozocin/metabolism
12.
Brain Res ; 1816: 148471, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37356701

ABSTRACT

Traumatic brain injuries (TBI) refer to multiple acquired dysfunctions arising from damage to the brain caused by an external force, including rapid acceleration/deceleration and concussion. Among them, mild TBI (mTBI) accounts for most cases (up to 90%) of injuries. It is responsible for a variety of symptoms, including anxiety, depression, and cognitive impairments that remain difficult to be treated. It has been reported that regular physical activity, as well as, improving life quality, display a neuroprotective function, suggesting a possible role in post-traumatic rehabilitation. In this study, we investigated the effects of treadmill exercise in a mice mTBI model by behavioural, electrophysiological and neurochemical analysis. Daily exercise decreased anxiety, aggressive behavior, and depression in mTBI mice. Accordingly, electrophysiological and neurochemical maladaptive rearrangement occurring in the hippocampus of mTBI mice were prevented by the exercise.


Subject(s)
Brain Concussion , Brain Injuries , Cognitive Dysfunction , Mice , Animals , Brain Injuries/psychology , Brain , Anxiety/etiology
13.
Biomed Pharmacother ; 163: 114845, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37167730

ABSTRACT

Chronic pain is an enormous public health concern, and its treatment is still an unmet medical need. Starting from data highlighting the promising effects of some nonsteroidal anti-inflammatory drugs in combination with gabapentin in pain treatment, we sought to combine ketoprofen lysine salt (KLS) and gabapentin to obtain an effective multimodal therapeutic approach for chronic pain. Using relevant in vitro models, we first demonstrated that KLS and gabapentin have supra-additive effects in modulating key pathways in neuropathic pain and gastric mucosal damage. To leverage these supra-additive effects, we then chemically combined the two drugs via co-crystallization to yield a new compound, a ternary drug-drug co-crystal of ketoprofen, lysine and gabapentin (KLS-GABA co-crystal). Physicochemical, biodistribution and pharmacokinetic studies showed that within the co-crystal, ketoprofen reaches an increased gastrointestinal solubility and permeability, as well as a higher systemic exposure in vivo compared to KLS alone or in combination with gabapentin, while both the constituent drugs have increased central nervous system permeation. These unique characteristics led to striking, synergistic anti-nociceptive and anti-inflammatory effects of KLS-GABA co-crystal, as well as significantly reduced spinal neuroinflammation, in translational inflammatory and neuropathic pain rat models, suggesting that the synergistic therapeutic effects of the constituent drugs are further boosted by the co-crystallization. Notably, while strengthening the therapeutic effects of ketoprofen, KLS-GABA co-crystal showed remarkable gastrointestinal tolerability in both inflammatory and chronic neuropathic pain rat models. In conclusion, these results allow us to propose KLS-GABA co-crystal as a new drug candidate with high potential clinical benefit-to-risk ratio for chronic pain treatment.


Subject(s)
Chronic Pain , Ketoprofen , Neuralgia , Rats , Animals , Ketoprofen/adverse effects , Gabapentin/therapeutic use , Neuroinflammatory Diseases , Lysine/therapeutic use , Lysine/pharmacology , Chronic Pain/drug therapy , Tissue Distribution , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Neuralgia/drug therapy
14.
Neuropharmacology ; 228: 109456, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36796675

ABSTRACT

Following insults or injury, microglia cells are activated contributing to the cytotoxic response or by promoting an immune-mediated damage resolution. Microglia cells express HCA2R, a hydroxy carboxylic acid (HCA) receptor, which has been shown to mediate neuroprotective and anti-inflammatory effects. In this study we found that HCAR2 expression levels were increased in cultured rat microglia cells after Lipopolysaccharide (LPS) exposure. In a similar fashion, the treatment with MK 1903, a potent full agonist of HCAR2, increased the receptor protein levels. Moreover, HCAR2 stimulation prevented i) cells viability ii) morphological activation iii) pro/anti-inflammatory mediators production in LPS-treated cells. Likewise, HCAR2 stimulation reduced the proinflammatory mediators mRNA expression induced by neuronal chemokine fractalkine (FKN), a neuronal derived chemokine activating its unique receptor, chemokine receptor 1 (CX3CR1) on microglia surface. Interestingly, electrophysiological recordings in vivo revealed that MK1903 was able to prevent the increase of the nociceptive neurons (NS) firing activity mediated by the spinal FKN application in healthy rats. Collectively, our data demonstrate that HCAR2 is functionally expressed in microglia, by showing its capability to shift microglia toward an anti-inflammatory phenotype. Moreover, we indicated the contribute of HCAR2 in the FKN signaling and suggested a possible HCAR2/CX3CR1 functional interaction. This study paves the way for further investigations aimed at understanding the role HCAR2 as potential target in neuroinflammation-based CNS disorders. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".


Subject(s)
Chemokines, CXC , Microglia , Rats , Animals , Chemokines, CXC/metabolism , Chemokines, CXC/pharmacology , Lipopolysaccharides/pharmacology , CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/metabolism , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism
15.
Neuropharmacology ; 222: 109304, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36341807

ABSTRACT

Chronic pain is a persistent, complex condition that contributes to impaired mood, anxiety and emotional problems. Osteoarthritis (OA) is one of the major causes of chronic pain in adults and elderly people. A substantial body of evidence demonstrate that hippocampal neural circuits, especially monoamine dopamine and serotonin levels, contributes to negative affect and avoidance motivation experienced during pain. Current pharmacological strategies for OA patients are unsatisfying and the endocannabinoid system modulation might represent an alternative for the treatment of OA-related pain. In the present study, we used a rat model of osteoarthritis induced by intra-articular injection of sodium monoiodoacetate to assess, 28 days post-induction, the contribution of endocannabinoid system on the possible alteration in pain perception and affective behavior, in LTP and monoamine levels in the lateral entorhinal cortex-dentate gyrus pathway. The results show that OA-related chronic pain induces working memory impairment and depressive-like behavior appearance, diminishes LTP, decreases dopamine levels and increases serotonin levels in the rat dentate gyrus. URB597 administration (i.p., 1 mg/kg) reduces hyperalgesia and mechanical allodynia, improves recognition memory and depressive-live behavior, restores LTP and normalizes monoamine levels in the hippocampus. The effect was observed 60-120 min post-treatment and was blocked by AM251, which proves the action of URB597 via the CB1 receptor. Therefore, our study confirms the role of anandamide in OA-related chronic pain management at the behavioral and hippocampal levels. This article is part of the Special Issue on 'Advances in mechanisms and therapeutic targets relevant to pain'.


Subject(s)
Chronic Pain , Osteoarthritis , Rats , Animals , Endocannabinoids , Serotonin , Dopamine , Osteoarthritis/drug therapy , Hippocampus , Amines , Hyperalgesia
16.
Front Bioeng Biotechnol ; 10: 934997, 2022.
Article in English | MEDLINE | ID: mdl-36466352

ABSTRACT

Osteoarthritis is a very disabling disease that can be treated with both non-pharmacological and pharmacological approaches. In the last years, pharmaceutical-grade chondroitin sulfate (CS) and glucosamine emerged as symptomatic slow-acting molecules, effective in pain reduction and improved function in patients affected by osteoarthritis. CS is a sulfated glycosaminoglycan that is currently produced mainly by extraction from animal tissues, and it is commercialized as a pharmaceutical-grade ingredient and/or food supplement. However, public concern on animal product derivatives has prompted the search for alternative non-extractive production routes. Thus, different approaches were established to obtain animal-free natural identical CS. On the other hand, the unsulfated chondroitin, which can be obtained via biotechnological processes, demonstrated promising anti-inflammatory properties in vitro, in chondrocytes isolated from osteoarthritic patients. Therefore, the aim of this study was to explore the potential of chondroitin, with respect to the better-known CS, in an in vivo mouse model of knee osteoarthritis. Results indicate that the treatment with biotechnological chondroitin (BC), similarly to CS, significantly reduced the severity of mechanical allodynia in an MIA-induced osteoarthritic mouse model. Decreased cartilage damage and a reduction of inflammation- and pain-related biochemical markers were also observed. Overall, our data support a beneficial activity of biotechnological unsulfated chondroitin in the osteoarthritis model tested, thus suggesting BC as a potential functional ingredient in pharmaceuticals and nutraceuticals with the advantage of avoiding animal tissue extraction.

17.
Pharmaceutics ; 14(8)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36015298

ABSTRACT

Some 30−50% of the global population and almost 20% of the European population actually suffer from chronic pain, which presents a tremendous burden to society when this pain turns into a disability and hospitalization. Palmitoylethanolamide (PEA) has been demonstrated to improve pain in preclinical contexts, but an appraisal of clinical evidence is still lacking. The present study aimed at addressing the working hypothesis for the efficacy of PEA for nociceptive musculoskeletal and neuropathic pain in the clinical setting. The systematic search, selection and analysis were performed in agreement with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 recommendations. The primary outcome was pain reduction, as measured by a pain assessment scale. The secondary outcome was improvement in quality of life and/or of parameters of function. The results obtained for a total of 933 patients demonstrate the efficacy of PEA over the control (p < 0.00001), in particular in six studies apart from the two randomized, double-blind clinical trials included. However, the results are downgraded due to the high heterogeneity of the studies (I2 = 99%), and the funnel plot suggests publication bias. Efficacy in achieving a reduction in the need for rescue medications and improvement in functioning, neuropathic symptoms and quality of life are reported. Therefore, adequately powered randomized, double-blind clinical trials are needed to deepen the domains of efficacy of add-on therapy with PEA for chronic pain. PROSPERO registration: CRD42022314395.

18.
Front Mol Neurosci ; 15: 892870, 2022.
Article in English | MEDLINE | ID: mdl-35721314

ABSTRACT

Cinnabarinic acid (CA) is a trace kynurenine metabolite, which activates both type-4 metabotropic glutamate (mGlu4) and arylic hydrocarbon (Ah) receptors. We examined the action of CA in models of inflammatory and neuropathic pain moving from the evidence that mGlu4 receptors are involved in the regulation of pain thresholds. Systemic administration of low doses of CA (0.125 and 0.25 mg/kg, i.p.) reduced nocifensive behaviour in the second phase of the formalin test. CA-induced analgesia was abrogated in mGlu4 receptor knockout mice, but was unaffected by treatment with the Ah receptor antagonist, CH223191 (1 mg/Kg, s.c.). Acute injection of low doses of CA (0.25 mg/kg, i.p.) also caused analgesia in mice subjected to Chronic Constriction Injury (CCI) of the sciatic nerve. Electrophysiological recording showed no effect of CA on spinal cord nociceptive neurons and a trend to a lowering effect on the frequency and duration of excitation of the rostral ventromedial medulla (RVM) ON cells in CCI mice. However, local application of CH223191 or the group-III mGlu receptor antagonist, MSOP disclosed a substantial lowering and enhancing effect of CA on both populations of neurons, respectively. When repeatedly administered to CCI mice, CA retained the analgesic activity only when combined with CH223191. Repeated administration of CA plus CH223191 restrained the activity of both spinal nociceptive neurons and RVM ON cells, in full agreement with the analgesic activity. These findings suggest that CA is involved in the regulation of pain transmission, and its overall effect depends on the recruitment of mGlu4 and Ah receptors.

19.
Biomed Pharmacother ; 153: 113336, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35772374

ABSTRACT

Due to the widespread use of non-steroidal anti-inflammatory drugs (NSAIDs), the incidence of NSAID-associated adverse events has increased exponentially over the past decades. Ketoprofen (ketoprofen acid, KA) is a widely used NSAID and, like with other NSAIDs, its use can be associated with adverse effects that especially involve the gastrointestinal tract and the kidney. The salification of KA with L-lysine has led to the synthesis of ketoprofen lysine salt (KLS), which is characterized by higher solubility and a more rapid gastrointestinal absorption compared to KA. Previous studies have reported that KLS has also an increased gastric tolerance in vitro, and this is due to the inhibition of lipid peroxidation and reactive oxygen species scavenging effects of L-lysine. Here, we report in vivo tolerability/toxicity studies that were conducted prior seeking KLS marketing authorization, in which we compared KLS and KA safety profile, focusing in particular on the evaluation of the gastrointestinal and renal tolerability of the drugs administered orally to dogs. Our results demonstrate that KLS has an increased in vivo gastrointestinal tolerability compared to KA and show, for the first time, that KLS has also increased in vivo renal tolerability compared to KA, thus supporting the concept that L-lysine may counteract NSAID-induced oxidative stress-mediated gastrointestinal and renal injury.


Subject(s)
Ketoprofen , Animals , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Dogs , Ketoprofen/analogs & derivatives , Kidney , Lysine/analogs & derivatives , Lysine/pharmacology , Stomach
20.
Neurobiol Dis ; 170: 105773, 2022 08.
Article in English | MEDLINE | ID: mdl-35623598

ABSTRACT

Gut microbiota has implications in Central Nervous System (CNS) disorders. Our study systematically identified preclinical studies aimed to investigate the possible gut microbiota contribution in neuropathy and neuropathic pain. The systematic review is reported in accordance with PRISMA checklist and guidelines outlined updated to 2020. We included research articles reporting neuropathy-related behavioral evaluations and/or neurological scores coupled to gut microbiota analysis performed by high-throughput technologies in the last ten years. Two investigators performed a search through 3 electronic bibliographic databases for full-text articles (PubMed, Scopus, and EMBASE) and three registries (Prospero, SyRF, and bioRxiv), cross-references, and linear searches. We assessed the methodological quality via the CAMARADES checklist and appraised the heterogeneous body of evidence by narrative synthesis. In total, there were 19 eligible studies. The most of these reports showed significant changes in gut microbiota setting in neuropathy conditions. The major gut microbiome remodeling was through fecal microbiome transplantation. Mechanistic proof of the gut-CNS communication was achieved by measuring inflammatory mediators, metabolic products, or neurotransmitters. As a limitation, we found considerable heterogeneity across eligible studies. We conclude that the current understanding of preclinical findings suggested an association between neuropathy and/or neuropathic pain and gut microbiota modifications. Our analysis provides the basis for further studies targeting microbiota for managing symptoms of neuropathy or other neuroinflammation-based CNS disorders. The systematic review protocol was registered on the international database Prospero under the registration number (257628).


Subject(s)
Gastrointestinal Microbiome , Microbiota , Neuralgia , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...