Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 9: e12218, 2021.
Article in English | MEDLINE | ID: mdl-34703667

ABSTRACT

Recent studies that have systematically augmented our knowledge of dermal bones of the Late Triassic temnospondyl amphibian Metoposaurus krasiejowensis have mostly focused on shoulder girdle elements and the skull. So far, histological data on the mandible are still scant. For the present study, two mandibles have been examined, using 50 standard thin sections. Dermal bones of the mandible reveal a uniform diploë structure, with the external cortex consisting of moderately vascularised, parallel-fibred bone, as well as a distinct alternation of thick zones and thinner annuli. Dense bundles of well-mineralised Sharpey's fibres are seen in the external cortex over the entire length of the mandible. The trabecular middle region is highly porous and well vascularised, showing small primary vascular canals and more numerous secondary osteons; irregular erosion spaces occur in large numbers as well. The thin and poorly vascular internal cortex consists of parallel-fibred bone. The articular is not a dermal bone in origin, having been formed of a thin layer of avascular cortex and a very extensive, trabecular middle region. In contrast to the dermal bones of the mandible, the articular developed from a cartilaginous precursor, as evidenced by numerous remains of calcified cartilage in the central parts of the bone. Histological variability is extremely high along the mandible, its anterior part being characterised by high compactness and biomechanically good resistance in contrast to the highly porous posterior parts. Distinct variations of bone thickness and degree of bone porosity in specific areas of the mandible, may be due to local differences in biomechanics during feeding. The microstructure of the mandible corroborates a previous study of the active and ambush predation strategy in metoposaurids.

2.
J Anat ; 237(6): 1151-1161, 2020 12.
Article in English | MEDLINE | ID: mdl-32707603

ABSTRACT

Temnospondyli are commonly believed to have possessed four digits in the manus and five in the pes. However, actual finds of articulated autopodia are extremely rare. Therefore, an articulated, slightly incomplete forelimb skeleton with preserved manus of Metoposaurus krasiejowensis from the Late Triassic of Poland is important in providing new details about the structure and ossification sequence in the temnospondyl limb. The most important observation is the presence of five metacarpals in this specimen. This allows reconstructing the manus as pentadactyl. The number of phalanges and the distribution of distal articulation facets allow reconstruction of the digit formula as (2?)-3-3-(3?)-(2?). The well-developed fifth digit suggests that the Metoposaurus manus shows a unique ossification sequence: the reduction or late ossification of the first digit conforms to the amniote-frog pattern, and the early development of the second and third digit makes Metoposaurus similar to salamanders. Based on the distribution of pentadactyly vs. tetradactyly in the temnospondyl manus, the number of digits was not phylogenetically constrained in temnospondyls, similar to today's amphibians.


Subject(s)
Amphibians/anatomy & histology , Biological Evolution , Forelimb/anatomy & histology , Animals , Fossils , Phylogeny , Poland
3.
J Morphol ; 280(12): 1850-1864, 2019 12.
Article in English | MEDLINE | ID: mdl-31638728

ABSTRACT

Cranial sutures connect adjacent bones of the skull and play an important role in the absorption of stresses that may occur during different activities. The Late Triassic temnospondyl amphibian Metoposaurus krasiejowensis has been extensively studied over the years in terms of skull biomechanics, but without a detailed description of the function of cranial sutures. In the present study, 34 thin sections of cranial sutures were examined in order to determine their histovariability and interpret their biomechanical role in the skull. The histological model was compared with three-dimensional-finite element analysis (FEA) simulations of the skull under bilateral and lateral biting as well as skull-raising loads for maximum and minimum principal stress. Histologically, only two sutural morphologies were recognised in the skull of Metoposaurus: interdigitated sutures (commonly associated with compressive stresses) are dominant along the entire length of the skull roof and palate; tongue-and-groove sutures (commonly associated with tensile stresses) are present across the maxilla. FEA shows a much more complex picture of stress type and distribution than predicted by sutures. Common to both methods is a predominance of compressive stresses which act on the skull during biting. The methods predict different stress regimes during biting in the posterior part of the skull: where histological analysis suggests compression, FEA predicts tension. For lateral biting and skull raising, histological and digital reconstructions show similar general patterns but with some variations.


Subject(s)
Amphibians/anatomy & histology , Cranial Sutures/anatomy & histology , Fossils/anatomy & histology , Amphibians/physiology , Animals , Biomechanical Phenomena , Cranial Sutures/physiology , Finite Element Analysis , Poland , Skull/anatomy & histology , Skull/physiology
4.
PeerJ ; 6: e5267, 2018.
Article in English | MEDLINE | ID: mdl-30083441

ABSTRACT

BACKGROUND: Amphibians are animals strongly dependent on environmental conditions, like temperature, water accessibility, and the trophic state of the reservoirs. Thus, they can be used in modern palaeoenvironmental analysis, reflecting ecological condition of the biotope. METHODS: To analyse the observed diversity in the temnospondyl Metoposaurus krasiejowensis from Late Triassic deposits in Krasiejów (Opole Voivodeship, Poland), the characteristics of the ornamentation (such as grooves, ridges, tubercules) of 25 clavicles and 13 skulls were observed on macro- and microscales, including the use of a scanning electron microscope for high magnification. The different ornamentation patterns found in these bones have been used for taxonomical and ecological studies of inter- vs. intraspecific variation. RESULTS: Two distinct types of ornamentation (fine, regular and sparse, or coarse, irregular and dense) were found, indicating either taxonomical, ecological, individual, or ontogenetic variation, or sexual dimorphism in M. krasiejowensis. DISCUSSION: Analogies with modern Anura and Urodela, along to previous studies on temnospondyls amphibians and the geology of the Krasiejów site suggest that the differences found are rather intraspecific and may suggest ecological adaptations. Sexual dimorphism and ontogeny cannot be undoubtedly excluded, but ecological variation between populations of different environments or facultative neoteny (paedomorphism) in part of the population (with types of ornamentations being adaptations to a more aquatic or a more terrestrial lifestyle) are the most plausible explanations.

5.
PeerJ ; 6: e4426, 2018.
Article in English | MEDLINE | ID: mdl-29503770

ABSTRACT

Finite Element Analysis (FEA) is a useful method for understanding form and function. However, modelling of fossil taxa invariably involves assumptions as a result of preservation-induced loss of information in the fossil record. To test the validity of predictions from FEA, given such assumptions, these results could be compared to independent lines of evidence for cranial mechanics. In the present study a new concept of using bone microstructure to predict stress distribution in the skull during feeding is put forward and a correlation between bone microstructure and results of computational biomechanics (FEA) is carried out. The bony framework is a product of biological optimisation; bone structure is created to meet local mechanical conditions. To test how well results from FEA correlate to cranial mechanics predicted from bone structure, the well-known temnospondyl Metoposaurus krasiejowensis was used as a model. A crucial issue to Temnospondyli is their feeding mode: did they suction feed or employ direct biting, or both? Metoposaurids have previously been characterised either as active hunters or passive bottom dwellers. In order to test the correlation between results from FEA and bone microstructure, two skulls of Metoposaurus were used, one modelled under FE analyses, while for the second one 17 dermal bone microstructure were analysed. Thus, for the first time, results predicting cranial mechanical behaviour using both methods are merged to understand the feeding strategy of Metoposaurus. Metoposaurus appears to have been an aquatic animal that exhibited a generalist feeding behaviour. This taxon may have used two foraging techniques in hunting; mainly bilateral biting and, to a lesser extent, lateral strikes. However, bone microstructure suggests that lateral biting was more frequent than suggested by Finite Element Analysis (FEA). One of the potential factors that determined its mode of life may have been water levels. During optimum water conditions, metoposaurids may have been more active ambush predators that were capable of lateral strikes of the head. The dry season required a less active mode of life when bilateral biting is particularly efficient. This, combined with their characteristically anteriorly positioned orbits, was optimal for ambush strategy. This ability to use alternative modes of food acquisition, independent of environmental conditions, might hold the key in explaining the very common occurrence of metoposaurids during the Late Triassic.

6.
PeerJ ; 4: e2685, 2016.
Article in English | MEDLINE | ID: mdl-27843719

ABSTRACT

In this study, 21 skull bones of Metoposaurus krasiejowensis from the Late Triassic of Poland were investigated histologically. Dermal bones show a diploë structure, with an ornamented external surface. The ridges consist of mostly well vascularized parallel-fibered bone; the valleys are built of an avascular layer of lamellar bone. The thick middle region consists of cancellous bone, with varying porosity. The thin and less vascularized internal cortex consists of parallel-fibered bone. The numerous Sharpey's fibers and ISF are present in all bones. The cyclicity of growth is manifested as an alternation of thick, avascular annuli and high vascularized zones as well as a sequence of resting lines. The detailed histological framework of dermal bones varies even within a single bone; this seems to be related to the local biomechanical loading of the particular part of the skull. The dynamic processes observed during the ornamentation creation indicate that the positions of the ridges and grooves change during growth and could be a specific adaptation to changing biomechanical conditions and stress distribution during bone development. In the supratemporal, the cementing lines show that the remodeling process could be involved in the creations of sculpture. The common occurrence of ISF suggests that metaplastic ossification plays an important role during cranial development. Endochondral bones preserved the numerous remains of calcified cartilage. This indicates that ossification follows a pattern known for stereospondyl intercentra, with relatively slow ossification of the trabecular part and late development of the periosteal cortex. The large accumulation of Sharpey's fibers in the occipital condyles indicates the presence of strong muscles and ligaments connecting the skull to the vertebral column.

SELECTION OF CITATIONS
SEARCH DETAIL