Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Lancet Respir Med ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38991585

ABSTRACT

Lower respiratory tract infections, commonly caused by respiratory syncytial virus (RSV) or Streptococcus pneumoniae (pneumococcus), pose a substantial global health burden, especially in children younger than 5 years of age. A deeper understanding of the relationship between RSV and pneumococcus would aid the development of health-care approaches to disease prevention and management. We completed a systematic review to identify and assess evidence pertaining to the relationship between RSV and pneumococcus in the pathogenesis of childhood respiratory infections. We found mechanistic evidence for direct pathogen-pathogen interactions and for indirect interactions involving host modulation. We found a strong seasonal epidemiological association between these two pathogens, which was recently confirmed by a parallel decrease and a subsequent resurgence of both RSV and pneumococcus-associated disease during the COVID-19 pandemic. Importantly, we found that pneumococcal vaccination was associated with reduced RSV hospitalisations in infants, further supporting the relevance of their interaction in modulating severe disease. Overall evidence supports a broad biological and clinical interaction between pneumococcus and RSV in the pathogenesis of childhood respiratory infections. We hypothesise that the implementation of next-generation pneumococcal and RSV vaccines and monoclonal antibodies targeting RSV will act synergistically to reduce global morbidity and mortality related to childhood respiratory infections.

2.
Sci Rep ; 14(1): 13928, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886476

ABSTRACT

Respiratory syncytial virus is the major cause of acute lower respiratory tract infections in young children, causing extensive mortality and morbidity globally, with limited therapeutic or preventative options. Cathelicidins are innate immune antimicrobial host defence peptides and have antiviral activity against RSV. However, upper respiratory tract cathelicidin expression and the relationship with host and environment factors in early life, are unknown. Infant cohorts were analysed to characterise early life nasal cathelicidin levels, revealing low expression levels in the first week of life, with increased levels at 9 months which are comparable to 2-year-olds and healthy adults. No impact of prematurity on nasal cathelicidin expression was observed, nor were there effects of sex or birth mode, however, nasal cathelicidin expression was lower in the first week-of-life in winter births. Nasal cathelicidin levels were positively associated with specific inflammatory markers and demonstrated to be associated with microbial community composition. Importantly, levels of nasal cathelicidin expression were elevated in infants with mild RSV infection, but, in contrast, were not upregulated in infants hospitalised with severe RSV infection. These data suggest important relationships between nasal cathelicidin, upper airway microbiota, inflammation, and immunity against RSV infection, with interventional potential.


Subject(s)
Cathelicidins , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/metabolism , Humans , Female , Male , Infant , Infant, Newborn , Respiratory Syncytial Virus, Human/immunology , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Nasal Mucosa/immunology
3.
PLoS Pathog ; 20(5): e1012111, 2024 May.
Article in English | MEDLINE | ID: mdl-38718049

ABSTRACT

Infants are highly susceptible to invasive respiratory and gastrointestinal infections. To elucidate the age-dependent mechanism(s) that drive bacterial spread from the mucosa, we developed an infant mouse model using the prevalent pediatric respiratory pathogen, Streptococcus pneumoniae (Spn). Despite similar upper respiratory tract (URT) colonization levels, the survival rate of Spn-infected infant mice was significantly decreased compared to adults and corresponded with Spn dissemination to the bloodstream. An increased rate of pneumococcal bacteremia in early life beyond the newborn period was attributed to increased bacterial translocation across the URT barrier. Bacterial dissemination in infant mice was independent of URT monocyte or neutrophil infiltration, phagocyte-derived ROS or RNS, inflammation mediated by toll-like receptor 2 or interleukin 1 receptor signaling, or the pore-forming toxin pneumolysin. Using molecular barcoding of Spn, we found that only a minority of bacterial clones in the nasopharynx disseminated to the blood in infant mice, indicating the absence of robust URT barrier breakdown. Rather, transcriptional profiling of the URT epithelium revealed a failure of infant mice to upregulate genes involved in the tight junction pathway. Expression of many such genes was also decreased in early life in humans. Infant mice also showed increased URT barrier permeability and delayed mucociliary clearance during the first two weeks of life, which corresponded with tighter attachment of bacteria to the respiratory epithelium. Together, these results demonstrate a window of vulnerability during postnatal development when altered mucosal barrier function facilitates bacterial dissemination.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Animals , Pneumococcal Infections/microbiology , Pneumococcal Infections/immunology , Mice , Humans , Animals, Newborn , Disease Models, Animal , Mice, Inbred C57BL , Respiratory Mucosa/microbiology , Respiratory Mucosa/metabolism , Female , Nasopharynx/microbiology
4.
J Allergy Clin Immunol ; 153(6): 1574-1585.e14, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467291

ABSTRACT

BACKGROUND: The respiratory microbiome has been associated with the etiology and disease course of asthma. OBJECTIVE: We sought to assess the nasopharyngeal microbiota in children with a severe asthma exacerbation and their associations with medication, air quality, and viral infection. METHODS: A cross-sectional study was performed among children aged 2 to 18 years admitted to the medium care unit (MCU; n = 84) or intensive care unit (ICU; n = 78) with an asthma exacerbation. For case-control analyses, we matched all cases aged 2 to 6 years (n = 87) to controls in a 1:2 ratio. Controls were participants of either a prospective case-control study or a longitudinal birth cohort (n = 182). The nasopharyngeal microbiota was characterized by 16S-rRNA-gene sequencing. RESULTS: Cases showed higher Shannon diversity index (ICU and MCU combined; P = .002) and a distinct microbial community composition when compared with controls (permutational multivariate ANOVA R2 = 1.9%; P < .001). We observed significantly higher abundance of Staphylococcus and "oral" taxa, including Neisseria, Veillonella, and Streptococcus spp. and a lower abundance of Dolosigranulum pigrum, Corynebacterium, and Moraxella spp. (MaAsLin2; q < 0.25) in cases versus controls. Furthermore, Neisseria abundance was associated with more severe disease (ICU vs MCU MaAslin2, P = .03; q = 0.30). Neisseria spp. abundance was also related with fine particulate matter exposure, whereas Haemophilus and Streptococcus abundances were related with recent inhaled corticosteroid use. We observed no correlations with viral infection. CONCLUSIONS: Our results demonstrate that children admitted with asthma exacerbations harbor a microbiome characterized by overgrowth of Staphylococcus and "oral" microbes and an underrepresentation of beneficial niche-appropriate commensals. Several of these associations may be explained by (environmental or medical) exposures, although cause-consequence relationships remain unclear and require further investigations.


Subject(s)
Asthma , Microbiota , Nasopharynx , Humans , Asthma/microbiology , Child , Child, Preschool , Male , Nasopharynx/microbiology , Female , Adolescent , Cross-Sectional Studies , Case-Control Studies , RNA, Ribosomal, 16S/genetics , Disease Progression , Prospective Studies , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
6.
EBioMedicine ; 98: 104868, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37950996

ABSTRACT

BACKGROUND: Mycoplasma pneumoniae is a common cause of community-acquired pneumonia in school-aged children and can be preceded by asymptomatic carriage. However, its role in recurrent respiratory tract infections is unclear. We studied the prevalence of M.pneumoniae carriage in children with recurrent respiratory infections and identified associated factors. METHODS: We tested M.pneumoniae carriage by qPCR in children with recurrent infections and their healthy family members in a cross-sectional study. Serum and mucosal total and M.pneumoniae-specific antibody levels were measured by ELISA and nasopharyngeal microbiota composition was characterized by 16S-rRNA sequencing. FINDINGS: Prevalence of M.pneumoniae carriage was higher in children with recurrent infections (68%) than their family members without infections (47% in siblings and 27% in parents). M.pneumoniae carriage among family members appeared to be associated with transmission within the household, likely originating from the affected child. In logistic regression corrected for age and multiple comparisons, IgA (OR 0.16 [0.06-0.37]) and total IgG deficiency (OR 0.15 [0.02-0.74]) were less prevalent in M.pneumoniae carriers (n = 78) compared to non-carriers (n = 36). In multivariable analysis, the nasopharyngeal microbiota of M.pneumoniae carriers had lower alpha diversity (OR 0.27 [0.09-0.67]) and a higher abundance of Haemophilus influenzae (OR 45.01 [2.74-1608.11]) compared to non-carriers. INTERPRETATION: M.pneumoniae carriage is highly prevalent in children with recurrent infections and carriers have a less diverse microbiota with an overrepresentation of disease-associated microbiota members compared to non-carriers. Given the high prevalence of M.pneumoniae carriage and the strong association with H. influenzae, we recommend appropriate antibiotic coverage of M.pneumoniae and H. influenzae in case of suspected pneumonia in children with recurrent respiratory tract infections or their family members. FUNDING: Wilhelmina Children's Hospital Research Fund, 'Christine Bader Stichting Irene KinderZiekenhuis', Sophia Scientific Research Foundation, ESPID Fellowship funded by Seqirus, Hypatia Fellowship funded by Radboudumc and The Netherlands Organisation for Health Research and Development (ZonMW VENI grant to LM Verhagen).


Subject(s)
Microbiota , Pneumococcal Infections , Pneumonia , Respiratory Tract Infections , Child , Humans , Infant , Streptococcus pneumoniae/genetics , Mycoplasma pneumoniae/genetics , Pneumococcal Infections/epidemiology , Cross-Sectional Studies , Reinfection , Nasopharynx , Haemophilus influenzae , Carrier State/epidemiology
7.
Int J Mol Sci ; 24(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38003242

ABSTRACT

Protracted bacterial bronchitis (PBB) causes chronic wet cough for which seasonal azithromycin is increasingly used to reduce exacerbations. We investigated the impact of seasonal azithromycin on antimicrobial resistance and the nasopharyngeal microbiome. In an observational cohort study, 50 children with PBB were enrolled over two consecutive winters; 25/50 at study entry were designated on clinical grounds to take azithromycin over the winter months and 25/50 were not. Serial nasopharyngeal swabs were collected during the study period (12-20 months) and cultured bacterial isolates were assessed for antimicrobial susceptibility. 16S rRNA-based sequencing was performed on a subset of samples. Irrespective of azithromycin usage, high levels of azithromycin resistance were found; 73% of bacteria from swabs in the azithromycin group vs. 69% in the comparison group. Resistance was predominantly driven by azithromycin-resistant S. pneumoniae, yet these isolates were mostly erythromycin susceptible. Analysis of 16S rRNA-based sequencing revealed a reduction in within-sample diversity in response to azithromycin, but only in samples of children actively taking azithromycin at the time of swab collection. Actively taking azithromycin at the time of swab collection significantly contributed to dissimilarity in bacterial community composition. The discrepancy between laboratory detection of azithromycin and erythromycin resistance in the S. pneumoniae isolates requires further investigation. Seasonal azithromycin for PBB did not promote antimicrobial resistance over the study period, but did perturb the microbiome.


Subject(s)
Bacterial Infections , Bronchitis, Chronic , Microbiota , Child , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Bacteria/genetics , Bacterial Infections/drug therapy , Chronic Disease , Cough/drug therapy , Drug Resistance, Bacterial , Erythromycin , RNA, Ribosomal, 16S/genetics , Seasons , Streptococcus pneumoniae
8.
J Allergy Clin Immunol ; 152(6): 1352-1367, 2023 12.
Article in English | MEDLINE | ID: mdl-37838221

ABSTRACT

Asthma is the most prevalent noncommunicable disease in childhood, characterized by reversible airway constriction and inflammation of the lower airways. The respiratory tract consists of the upper and lower airways, which are lined with a diverse community of microbes. The composition and density of the respiratory microbiome differs across the respiratory tract, with microbes adapting to the gradually changing physiology of the environment. Over the past decade, both the upper and lower respiratory microbiomes have been implicated in the etiology and disease course of asthma, as well as in its severity and phenotype. We have reviewed the literature on the role of the respiratory microbiome in asthma, making a careful distinction between the relationship of the microbiome with development of childhood asthma and its relationship with the disease course, while accounting for age and the microbial niches studied. Furthermore, we have assessed the literature regarding the underlying asthma endotypes and the impact of the microbiome on the host immune response. We have identified distinct microbial signatures across the respiratory tract associated with asthma development, stability, and severity. These data suggest that the respiratory microbiome may be important for asthma development and severity and may therefore be a potential target for future microbiome-based preventive and treatment strategies.


Subject(s)
Asthma , Microbiota , Humans , Respiratory System , Inflammation/complications , Immunity
9.
Curr Opin Infect Dis ; 36(5): 371-378, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37466039

ABSTRACT

PURPOSE OF REVIEW: Antibiotic use is associated with development of antimicrobial resistance and dysregulation of the microbiome (the overall host microbial community). These changes have in turn been associated with downstream adverse health outcomes. This review analyses recent important publications in a rapidly evolving field, contextualizing the available evidence to assist clinicians weighing the potential risks of antibiotics on a patient's microbiome. RECENT FINDING: Although the majority of microbiome research is observational, we highlight recent interventional studies probing the associations between antibiotic use, microbiome disruption, and ill-health. These studies include germ-free mouse models, antibiotic challenge in healthy human volunteers, and a phase III study of the world's first approved microbiome-based medicine. SUMMARY: The growing body of relevant clinical and experimental evidence for antibiotic-mediated microbiome perturbation is concerning, although further causal evidence is required. Within the limits of this evidence, we propose the novel term 'microbiotoxicity' to describe the unintended harms of antibiotics on a patient's microbiome. We suggest a framework for prescribers to weigh microbiotoxic effects against the intended benefits of antibiotic use.


Subject(s)
Anti-Bacterial Agents , Microbiota , Animals , Mice , Humans , Anti-Bacterial Agents/adverse effects
10.
Pediatr Res ; 94(6): 2047-2053, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37491587

ABSTRACT

BACKGROUND: Recurrent respiratory tract infections (rRTIs) frequently affect young children and are associated with antibody deficiencies. We investigated the prevalence of and epidemiological risk factors associated with antibody deficiencies in young children with rRTIs and their progression over time, and linked these to prospectively measured RTI symptoms. METHODS: We included children <7 years with rRTIs in a prospective cohort study. Patient characteristics associated with antibody deficiencies were identified using multivariable logistic regression analysis. RESULTS: We included 146 children with a median age of 3.1 years. Daily RTI symptoms were monitored in winter in n = 73 children and repeated immunoglobulin level measurements were performed in n = 45 children. Antibody deficiency was diagnosed in 56% and associated with prematurity (OR 3.17 [1.15-10.29]) and a family history of rRTIs (OR 2.37 [1.11-5.15]). Respiratory symptoms did not differ between children with and without antibody deficiencies. During follow-up, antibody deficiency diagnosis remained unchanged in 67%, while 18% of children progressed to a more severe phenotype. CONCLUSION: Immune maturation and genetic predisposition may lie at the basis of antibody deficiencies commonly observed in early life. Because disease severity did not differ between children with and without antibody deficiency, we suggest symptom management can be similar for all children with rRTIs. IMPACT: An antibody deficiency was present in 56% of children <7 years with recurrent respiratory tract infections (rRTIs) in a Dutch tertiary hospital setting. Prematurity and a family history of rRTIs were associated with antibody deficiencies, suggesting that immune maturation and genetic predisposition may lie at the basis of antibody deficiencies in early life. RTI symptoms did not differ between children with and without antibody deficiency, suggesting that symptom management can be similar for all children with rRTIs, irrespective of humoral immunological deficiencies. During follow-up, 18% of children progressed to a more severe phenotype, emphasizing that early diagnosis is warranted to prevent long-term morbidity and increase quality of life.


Subject(s)
Primary Immunodeficiency Diseases , Respiratory Tract Infections , Humans , Child , Child, Preschool , Quality of Life , Prospective Studies , Genetic Predisposition to Disease , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology
11.
NPJ Biofilms Microbiomes ; 9(1): 37, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37311781

ABSTRACT

The human vaginal and fecal microbiota change during pregnancy. Because of the proximity of these perineal sites and the evolutionarily conserved maternal-to-neonatal transmission of the microbiota, we hypothesized that the microbiota of these two sites (rectal and vaginal) converge during the last gestational trimester as part of the preparation for parturition. To test this hypothesis, we analyzed 16S rRNA sequences from vaginal introitus and rectal samples in 41 women at gestational ages 6 and 8 months, and at 2 months post-partum. The results show that the human vaginal and rectal bacterial microbiota converged during the last gestational trimester and into the 2nd month after birth, with a significant decrease in Lactobacillus species in both sites, as alpha diversity progressively increased in the vagina and decreased in the rectum. The microbiota convergence of the maternal vaginal-anal sites perinatally might hold significance for the inter-generational transmission of the maternal microbiota.


Subject(s)
Microbiota , Rectum , Infant, Newborn , Pregnancy , Humans , Female , RNA, Ribosomal, 16S/genetics , Postpartum Period , Vagina
12.
Microbiol Spectr ; 11(3): e0405722, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37199622

ABSTRACT

16S-based sequencing provides broader information on the respiratory microbial community than conventional culturing. However, it (often) lacks species- and strain-level information. To overcome this issue, we used 16S rRNA-based sequencing results from 246 nasopharyngeal samples obtained from 20 infants with cystic fibrosis (CF) and 43 healthy infants, which were all 0 to 6 months old, and compared them to both standard (blind) diagnostic culturing and a 16S-sequencing-informed "targeted" reculturing approach. Using routine culturing, we almost uniquely detected Moraxella catarrhalis, Staphylococcus aureus, and Haemophilus influenzae (42%, 38%, and 33% of samples, respectively). Using the targeted reculturing approach, we were able to reculture 47% of the top-5 operational taxonomical units (OTUs) in the sequencing profiles. In total, we identified 60 species from 30 genera with a median of 3 species per sample (range, 1 to 8). We also identified up to 10 species per identified genus. The success of reculturing the top-5 genera present from the sequencing profile depended on the genus. In the case of Corynebacterium being in the top 5, we recultured them in 79% of samples, whereas for Staphylococcus, this value was only 25%. The success of reculturing was also correlated with the relative abundance of those genera in the corresponding sequencing profile. In conclusion, revisiting samples using 16S-based sequencing profiles to guide a targeted culturing approach led to the detection of more potential pathogens per sample than conventional culturing and may therefore be useful in the identification and, consequently, treatment of bacteria considered relevant for the deterioration or exacerbation of disease in patients like those with CF. IMPORTANCE Early and effective treatment of pulmonary infections in cystic fibrosis is vital to prevent chronic lung damage. Although microbial diagnostics and treatment decisions are still based on conventional culture methods, research is gradually focusing more on microbiome and metagenomic-based approaches. This study compared the results of both methods and proposed a way to combine the best of both worlds. Many species can relatively easily be recultured based on the 16S-based sequencing profile, and it provides more in-depth information about the microbial composition of a sample than that obtained through routine (blind) diagnostic culturing. Still, well-known pathogens can be missed by both routine diagnostic culture methods as well as by targeted reculture methods, sometimes even when they are highly abundant, which may be a consequence of either sample storage conditions or antibiotic treatment at the time of sampling.


Subject(s)
Cystic Fibrosis , Microbiota , Infant , Humans , Child , Infant, Newborn , Cystic Fibrosis/diagnosis , Cystic Fibrosis/microbiology , RNA, Ribosomal, 16S/genetics , Respiratory System/microbiology , Bacteria/genetics , Microbiota/genetics
13.
J Infect Dis ; 228(7): 957-965, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37246259

ABSTRACT

BACKGROUND: Immunity to Streptococcus pyogenes in high burden settings is poorly understood. We explored S. pyogenes nasopharyngeal colonization after intranasal live attenuated influenza vaccine (LAIV) among Gambian children aged 24-59 months, and resulting serological response to 7 antigens. METHODS: A post hoc analysis was performed in 320 children randomized to receive LAIV at baseline (LAIV group) or not (control). S. pyogenes colonization was determined by quantitative polymerase chain reaction (qPCR) on nasopharyngeal swabs from baseline (day 0), day 7, and day 21. Anti-streptococcal IgG was quantified, including a subset with paired serum before/after S. pyogenes acquisition. RESULTS: The point prevalence of S. pyogenes colonization was 7%-13%. In children negative at day 0, S. pyogenes was detected at day 7 or 21 in 18% of LAIV group and 11% of control group participants (P = .12). The odds ratio (OR) for colonization over time was significantly increased in the LAIV group (day 21 vs day 0 OR, 3.18; P = .003) but not in the control group (OR, 0.86; P = .79). The highest IgG increases following asymptomatic colonization were seen for M1 and SpyCEP proteins. CONCLUSIONS: Asymptomatic S. pyogenes colonization appears modestly increased by LAIV, and may be immunologically significant. LAIV could be used to study influenza-S. pyogenes interactions. Clinical Trials Registration. NCT02972957.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Child , Gambia/epidemiology , Streptococcus pyogenes , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Vaccines, Attenuated , Immunoglobulin G
14.
Cell Host Microbe ; 31(3): 447-460.e6, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36893737

ABSTRACT

Early-life microbiota seeding and subsequent development is crucial to future health. Cesarean-section (CS) birth, as opposed to vaginal delivery, affects early mother-to-infant transmission of microbes. Here, we assess mother-to-infant microbiota seeding and early-life microbiota development across six maternal and four infant niches over the first 30 days of life in 120 mother-infant pairs. Across all infants, we estimate that on average 58.5% of the infant microbiota composition can be attributed to any of the maternal source communities. All maternal source communities seed multiple infant niches. We identify shared and niche-specific host/environmental factors shaping the infant microbiota. In CS-born infants, we report reduced seeding of infant fecal microbiota by maternal fecal microbes, whereas colonization with breastmilk microbiota is increased when compared with vaginally born infants. Therefore, our data suggest auxiliary routes of mother-to-infant microbial seeding, which may compensate for one another, ensuring that essential microbes/microbial functions are transferred irrespective of disrupted transmission routes.


Subject(s)
Microbiota , Mothers , Female , Pregnancy , Humans , Infant , Delivery, Obstetric , Cesarean Section , Feces
15.
Pediatr Infect Dis J ; 42(1): 59-65, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36476532

ABSTRACT

BACKGROUND: Respiratory tract infections (RTIs) in infants are often caused by viruses. Although respiratory syncytial virus (RSV), influenza virus and human metapneumovirus (hMPV) can be considered the most pathogenic viruses in children, rhinovirus (RV) is often found in asymptomatic infants as well. Little is known about the health consequences of viral presence, especially early in life. We aimed to examine the dynamics of (a)symptomatic viral presence and relate early viral detection to susceptibility to RTIs in infants. METHODS: In a prospective birth cohort of 117 infants, we tested 1304 nasopharyngeal samples obtained from 11 consecutive regular sampling moments, and during acute RTIs across the first year of life for 17 respiratory viruses by quantitative PCR. Associations between viral presence, viral (sub)type, viral load, viral co-detection and symptoms were tested by generalized estimating equation (GEE) models. RESULTS: RV was the most detected virus. RV was negatively associated [GEE: adjusted odds ratio (aOR) 0.41 (95% CI 0.18-0.92)], and hMPV, RSV, parainfluenza 2 and 4 and human coronavirus HKU1 were positively associated with an acute RTI. Asymptomatic RV in early life was, however, associated with increased susceptibility to and recurrence of RTIs later in the first year of life (Kaplan-Meier survival analysis: P = 0.022). CONCLUSIONS: Respiratory viruses, including the seasonal human coronaviruses, are often detected in infants, and are often asymptomatic. Early life RV presence is, though negatively associated with an acute RTI, associated with future susceptibility to and recurrence of RTIs. Further studies on potential ecologic or immunologic mechanisms are needed to understand these observations.


Subject(s)
Respiratory Tract Infections , Child , Humans , Prospective Studies , Respiratory Tract Infections/epidemiology
16.
Nat Commun ; 13(1): 6638, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36380002

ABSTRACT

The gut microbiota in early life, when critical immune maturation takes place, may influence the immunogenicity of childhood vaccinations. Here we assess the association between mode of delivery, gut microbiota development in the first year of life, and mucosal antigen-specific antibody responses against pneumococcal vaccination in 101 infants at age 12 months and against meningococcal vaccination in 66 infants at age 18 months. Birth by vaginal delivery is associated with higher antibody responses against both vaccines. Relative abundances of vaginal birth-associated Bifidobacterium and Escherichia coli in the first weeks of life are positively associated with anti-pneumococcal antibody responses, and relative abundance of E. coli in the same period is also positively associated with anti-meningococcal antibody responses. In this study, we show that mode of delivery-induced microbiota profiles of the gut are associated with subsequent antibody responses to routine childhood vaccines.


Subject(s)
Gastrointestinal Microbiome , Meningococcal Vaccines , Infant , Pregnancy , Female , Humans , Escherichia coli , Bifidobacterium , Vaccination , Antibodies, Bacterial
17.
Sci Rep ; 12(1): 16489, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36183009

ABSTRACT

One of the most widely used techniques in microbiota research is 16S-rRNA-sequencing. Several laboratory processes have been shown to impact sequencing results, especially in low biomass samples. Low biomass samples are prone to off-target amplification, where instead of bacterial DNA, host DNA is erroneously amplified. Knowledge on the laboratory processes influencing off-target amplification and detection is however scarce. We here expand on previous findings by demonstrating that off-target amplification is not limited to invasive biopsy samples, but is also an issue in low bacterial biomass respiratory (mucosal) samples, especially when below 0.3 pg/µL. We show that off-target amplification can partly be mitigated by using gel-based library purification methods. Importantly, we report a higher off-target amplicon detection rate when using MiSeq reagent kit v3 compared to v2 (mean 13.3% vs 0.1% off-target reads/sample, respectively), possibly as a result of differences in reagents or sequencing recipes. However, since after bioinformatic removal of off-target reads, MiSeq reagent kit v3 still results in a twofold higher number of reads when compared to v2, v3 is still preferred over v2. Together, these results add to the growing knowledge base on off-target amplification and detection, allowing researchers to anticipate this problem in 16S-rRNA-based microbiome studies involving low biomass samples.


Subject(s)
DNA , High-Throughput Nucleotide Sequencing , DNA/genetics , DNA, Bacterial/genetics , High-Throughput Nucleotide Sequencing/methods , Indicators and Reagents , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
18.
Environ Int ; 169: 107497, 2022 11.
Article in English | MEDLINE | ID: mdl-36088872

ABSTRACT

Air pollution from livestock farms is known to affect respiratory health of patients with chronic obstructive pulmonary disease (COPD). The mechanisms behind this relationship, however, remain poorly understood. We hypothesise that air pollutants could influence respiratory health through modulation of the airway microbiome. Therefore, we studied associations between air pollution exposure and the oropharyngeal microbiota (OPM) composition of COPD patients and controls in a livestock-dense area. Oropharyngeal swabs were collected from 99 community-based (mostly mild) COPD cases and 184 controls (baseline), and after 6 and 12 weeks. Participants were non-smokers or former smokers. Annual average livestock-related outdoor air pollution at the home address was predicted using dispersion modelling. OPM composition was analysed using 16S rRNA-based sequencing in all baseline samples and 6-week and 12-week repeated samples of 20 randomly selected subjects (n = 323 samples). A random selection of negative control swabs, taken every sampling day, were also included in the downstream analysis. Both farm-emitted endotoxin and PM10 levels were associated with increased OPM richness in COPD patients (p < 0.05) but not in controls. COPD case-control status was not associated with community structure, while correcting for known confounders (multivariate PERMANOVA p > 0.05). However, members of the genus Streptococcus were more abundant in COPD patients (Benjamini-Hochberg adjusted p < 0.01). Moderate correlation was found between ordinations of 20 subjects analysed at 0, 6, and 12 weeks (Procrustes r = 0.52 to 0.66; p < 0.05; Principal coordinate analysis of Bray-Curtis dissimilarity), indicating that the OPM is relatively stable over a 12 week period and that a single sample sufficiently represents the OPM. Air pollution from livestock farms is associated with OPM richness of COPD patients, suggesting that the OPM of COPD patients is susceptible to alterations induced by exposure to air pollutants.


Subject(s)
Air Pollutants , Air Pollution , Microbiota , Pulmonary Disease, Chronic Obstructive , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Animals , Endotoxins/analysis , Farms , Humans , Livestock , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics
19.
EBioMedicine ; 83: 104227, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35988464

ABSTRACT

BACKGROUND: Sepsis is a leading cause of neonatal death. Intrapartum azithromycin reduces neonatal nasopharyngeal carriage of potentially pathogenic bacteria, a prerequisite for sepsis. Early antibiotic exposure has been associated with microbiota perturbations with varying effects. This study aims to understand the effect of intrapartum azithromycin intervention on the developing nasopharyngeal microbiota of the child. METHODS: Using 16S rRNA gene sequencing, we analysed the microbiota of 343 nasopharyngeal samples collected from birth to 12 months from 109 healthy infants selected from a double-blind randomized placebo-controlled clinical trial conducted in the Gambia (PregnAnZI-1). In the trial, 829 women were given 2g oral azithromycin or placebo (1:1) during labour with the objective of reducing bacterial carriage in mother and child during the neonatal period. The post-hoc analysis presented here assessed the effect of the intervention on the child nasopharyngeal microbiota development. FINDINGS: 55 children were from mothers given azithromycin and 54 from mothers given placebo. Comparing arms, we found an increase in alpha-diversity at day-6 (p = 0·018), and a significant effect on overall microbiota composition at days 6 and 28 (R2 = 4.4%, q = 0·007 and R2 = 2.3%, q = 0·018 respectively). At genus level, we found lower representation of Staphylococcus at day-6 (q = 0·0303) and higher representation of Moraxella at 12 months (q = 0·0443). Unsupervised clustering of samples by microbial community similarity showed different community dynamics between the intervention and placebo arms during the neonatal period. INTERPRETATION: These results indicate that intrapartum azithromycin caused short-term alterations in the nasopharyngeal microbiota with modest overall effect at 12 months of age. Further exploration of the effects of these variations on microbiome function will give more insight on the potential risks and benefits, for the child, associated with this intervention. FUNDING: This work was jointly funded by the Medical Research Council (UK) (MC_EX_MR/J010391/1/MRC), Bill & Melinda Gates Foundation (OPP1196513), and MRCG@LSHTM Doctoral Training Program.


Subject(s)
Microbiota , Sepsis , Anti-Bacterial Agents/adverse effects , Azithromycin/adverse effects , Bacteria , Child , Double-Blind Method , Female , Humans , Infant , Infant, Newborn , RNA, Ribosomal, 16S/genetics , Sepsis/drug therapy
20.
Curr Opin Infect Dis ; 35(3): 215-222, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35665715

ABSTRACT

PURPOSE OF REVIEW: The respiratory microbiota has a role in respiratory tract infection (RTI) pathogenesis. On the mucosa, the respiratory microbiota interacts with potential pathogenic viruses, bacteria and the host immune system, including secretory IgA (sIgA). This review discusses the role of the respiratory microbiota and its interaction with the (mucosal) immune system in RTI susceptibility, as well as the potential to exploit the microbiota to promote health and prevent RTIs. RECENT FINDINGS: Recent studies confirm that specific microbiota profiles are associated with RTI susceptibility and during susceptibility and found accompanying RTIs, although clear associations have not yet been found for SARS-CoV-2 infection. sIgA plays a central role in RTI pathogenesis: it stands under control of the local microbiota, while at the same time influencing bacterial gene expression, metabolism and defense mechanisms. Respiratory microbiota interventions are still newly emerging but promising candidates for probiotics to prevent RTIs, such as Corynebacterium and Dolosigranulum species, have been identified. SUMMARY: Improved understanding of the respiratory microbiota in RTIs and its interplay with the immune system is of importance for early identification and follow-up of individuals at risk of infection. It also opens doors for future microbiota interventions by altering the microbiota towards a healthier state to prevent and/or adjunctively treat RTIs.


Subject(s)
COVID-19 , Microbiota , Respiratory Tract Infections , Bacteria/genetics , Health Promotion , Humans , Immunoglobulin A, Secretory , Respiratory Tract Infections/prevention & control , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...