Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
IUCrJ ; 7(Pt 6): 965-975, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33209311

ABSTRACT

Long-wavelength pulses from the Swiss X-ray free-electron laser (XFEL) have been used for de novo protein structure determination by native single-wavelength anomalous diffraction (native-SAD) phasing of serial femtosecond crystallography (SFX) data. In this work, sensitive anomalous data-quality indicators and model proteins were used to quantify improvements in native-SAD at XFELs such as utilization of longer wavelengths, careful experimental geometry optimization, and better post-refinement and partiality correction. Compared with studies using shorter wavelengths at other XFELs and older software versions, up to one order of magnitude reduction in the required number of indexed images for native-SAD was achieved, hence lowering sample consumption and beam-time requirements significantly. Improved data quality and higher anomalous signal facilitate so-far underutilized de novo structure determination of challenging proteins at XFELs. Improvements presented in this work can be used in other types of SFX experiments that require accurate measurements of weak signals, for example time-resolved studies.

2.
Nat Commun ; 11(1): 2131, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32358505

ABSTRACT

OLED technology beyond small or expensive devices requires light-emitters, luminophores, based on earth-abundant elements. Understanding and experimental verification of charge transfer in luminophores are needed for this development. An organometallic multicore Cu complex comprising Cu-C and Cu-P bonds represents an underexplored type of luminophore. To investigate the charge transfer and structural rearrangements in this material, we apply complementary pump-probe X-ray techniques: absorption, emission, and scattering including pump-probe measurements at the X-ray free-electron laser SwissFEL. We find that the excitation leads to charge movement from C- and P- coordinated Cu sites and from the phosphorus atoms to phenyl rings; the Cu core slightly rearranges with 0.05 Å increase of the shortest Cu-Cu distance. The use of a Cu cluster bonded to the ligands through C and P atoms is an efficient way to keep structural rigidity of luminophores. Obtained data can be used to verify computational methods for the development of luminophores.

3.
Nat Commun ; 10(1): 3606, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31399565

ABSTRACT

Disentangling the strong interplay between electronic and nuclear degrees of freedom is essential to achieve a full understanding of excited state processes during ultrafast nonadiabatic chemical reactions. However, the complexity of multi-dimensional potential energy surfaces means that this remains challenging. The energy flow during vibrational and electronic relaxation processes can be explored with structural sensitivity by probing a nuclear wavepacket using femtosecond time-resolved X-ray Absorption Near Edge Structure (TR-XANES). However, it remains unknown to what level of detail vibrational motions are observable in this X-ray technique. Herein we track the wavepacket dynamics of a prototypical [Cu(2,9-dimethyl-1,10-phenanthroline)2]+ complex using TR-XANES. We demonstrate that sensitivity to individual wavepacket components can be modulated by the probe energy and that the bond length change associated with molecular breathing mode can be tracked with a sub-Angstrom resolution beyond optical-domain observables. Importantly, our results reveal how state-of-the-art TR-XANES provides deeper insights of ultrafast nonadiabatic chemical reactions.

5.
Anal Chem ; 87(11): 5632-9, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25927339

ABSTRACT

An experimental and theoretical study of phosphorus electronic structure based on high energy resolution X-ray emission spectroscopy was performed. The Kα and Kß emission spectra of several phosphorus compounds were recorded using monochromatic synchrotron radiation and megaelectronvolt (MeV) proton beam for target excitation. Measured spectra are compared to the results of ab initio quantum chemical calculations based on density functional theory (DFT). Clear correlation between energy position of the Kα emission line and the phosphorus formal oxidation state as well as DFT-calculated number of valence electrons is obtained; measured energy shifts are reproduced by the calculations. Chemical sensitivity is increased further by looking at the Kß emission spectra probing directly the structure of occupied molecular orbitals. Energies and relative intensities of main components are given together with the calculated average atomic character of the corresponding molecular orbitals involved in transitions.


Subject(s)
Chemistry Techniques, Analytical/methods , Phosphorus/chemistry , Quantum Theory , Spectrometry, X-Ray Emission , Limit of Detection , Phosphorus/analysis
SELECTION OF CITATIONS
SEARCH DETAIL