Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 57(5): 739-761, 2023 03.
Article in English | MEDLINE | ID: mdl-36656174

ABSTRACT

Increasing evidence suggests that astrocytes play an important role in the progression of Parkinson's disease (PD). Previous studies on our parkin knockout mouse demonstrated a higher accumulation of damaged mitochondria in astrocytes than in surrounding dopaminergic (DA) neurons, suggesting that Parkin plays a crucial role regarding their interaction during PD pathogenesis. In the current study, we examined primary mesencephalic astrocytes and neurons in a direct co-culture system and discovered that the parkin deletion causes an impaired differentiation of mesencephalic neurons. This effect required the parkin mutation in astrocytes as well as in neurons. In Valinomycin-treated parkin-deficient astrocytes, ubiquitination of Mitofusin 2 was abolished, whereas there was no significant degradation of the outer mitochondrial membrane protein Tom70. This result may explain the accumulation of damaged mitochondria in parkin-deficient astrocytes. We examined differential gene expression in the substantia nigra region of our parkin-KO mouse by RNA sequencing and identified an upregulation of the endoplasmic reticulum (ER) Ca2+ -binding protein reticulocalbin 1 (RCN1) expression, which was validated using qPCR. Immunostaining of the SN brain region revealed RCN1 expression mainly in astrocytes. Our subcellular fractionation of brain extract has shown that RCN1 is located in the ER and in mitochondria-associated membranes (MAM). Moreover, a loss of Parkin function reduced ATP-stimulated calcium-release in ER mesencephalic astrocytes that could be attenuated by siRNA-mediated RCN1 knockdown. Our results indicate that RCN1 plays an important role in ER-associated calcium dyshomeostasis caused by the loss of Parkin function in mesencephalic astrocytes, thereby highlighting the relevance of astrocyte function in PD pathomechanisms.


Subject(s)
Calcium , Endoplasmic Reticulum , Parkinson Disease , Ubiquitin-Protein Ligases , Animals , Mice , Calcium/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Dopaminergic Neurons/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Mice, Knockout , Parkinson Disease/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Up-Regulation
2.
Front Cell Dev Biol ; 10: 950414, 2022.
Article in English | MEDLINE | ID: mdl-36060799

ABSTRACT

Atonal Homolog 8 (Atoh8) belongs to a large superfamily of transcriptional regulators called basic helix-loop-helix (bHLH) transcription factors. Atoh8 (murine homolog "Math6") has been shown to be involved in organogenesis during murine embryonic development. We have previously identified the expression of Atoh8 during skeletal myogenesis in chicken where we described its involvement in hypaxial myotome formation suggesting a regulatory role of Atoh8 in skeletal muscle development. Within the current study, we analyzed the effect of the loss of function of Atoh8 in murine primary myoblasts and during differentiation of pluripotent stem cells into myotubes, and the effect of its gain of function in C2C12 cells. Based on the observed results, we conclude that Atoh8 regulates myoblast proliferation via modulating myostatin signaling. Further, our data revealed a reduced muscle mass, strength and fiber size with significant changes to the muscle fiber type suggesting atrophy in skeletal muscle of Atoh8 mutants. We further report that Atoh8 knockout mice suffer from a condition similar to ambient hypoxia which may be the primary cause of the phenotype. Altogether, this study shows the significance of Atoh8 not only in myogenesis but also in the maintenance of skeletal muscle.

3.
J Neurosci ; 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35853721

ABSTRACT

Aggressive behavior is one of the most conserved social interactions in nature and serves as a crucial evolutionary trait. Serotonin (5-HT) plays a key role in the regulation of our emotions such as anxiety and aggression, but which molecules and mechanisms in the serotonergic system are involved in violent behavior is still unknown. In this study we show that deletion of the P/Q-type calcium channel selectively from serotonergic neurons in the dorsal raphe nuclei (DRN) augments aggressive behavior in male mice, while anxiety is not affected. These mice demonstrated increased induction of the immediate early gene c-fos and in vivo serotonergic firing activity in the DRN. The ventrolateral part of the ventromedial hypothalamus (VHMvl) is also a prominent region of the brain mediating aggression. We confirmed a monosynaptic projection from the DRN to the VHMvl and silencing these projections with an inhibitory designer receptor exclusively activated by a designer drug (DREADD) effectively reduced aggressive behavior. Overall, our findings show that deletion of the P/Q-type calcium channel from DRN neurons is sufficient to induce male aggression in mice and regulating its activity may serve as a therapeutic approach to treat violent behavior.SIGNIFICANCE STATEMENTIn this study we show that P/Q-type calcium channel is mediating aggression in serotonergic neurons from the dorsal raphe nucleus via monosynaptic projections to the ventrolateral part of the ventromedial hypothalamus. More importantly, silencing these projections reduced aggressive behavior in mice and may serve as a therapeutic approach for treating aggression in humans.

4.
Hum Mol Genet ; 31(22): 3807-3828, 2022 11 10.
Article in English | MEDLINE | ID: mdl-35708512

ABSTRACT

Fear and anxiety have proven to be essential during the evolutionary process. However, the mechanisms involved in recognizing and categorizing threat probability (i.e. low to high) to elicit the appropriate defensive behavior are yet to be determined. In this study, we investigated the cerebellar contribution in evoking appropriate defensive escape behavior using a purely cerebellar, neurodegenerative mouse model for spinocerebellar ataxia type 6 which is caused by an expanded CAG repeat in exon 47 of the P/Q type calcium channel α1A subunit. These mice overexpress the carboxy terminus (CT) of the P/Q type calcium channel containing an expanded 27 CAG repeat specifically in cerebellar Purkinje cells (CT-longQ27PC). We found that our CT-longQ27PC mice exhibit anxiolytic behavior in the open field, elevated plus maze and light/dark place preference tests, which could be recovered with more threatening conditions such as brighter lighting, meowing sounds and an ultrasound repellent. Their innate fear to find safety in the Barnes maze and visual cliff tests was also diminished with subsequent trials, which could be partially recovered with an ultrasound repellent in the Barnes maze. However, under higher threat conditions such as in the light/dark place preference with ultrasound repellent and in the looming tests, CT-longQ27PC mice responded with higher defensive escape behaviors as controls. Moreover, CT-longQ27PC mice displayed increased levels of CT-labeled aggregates compared with controls. Together these data suggest that cerebellar degeneration by overexpression of CT-longQ27PC is sufficient to impair defensive escape responses in those mice.


Subject(s)
Calcium Channels, Q-Type , Spinocerebellar Ataxias , Animals , Mice , Calcium Channels , Disease Models, Animal , Probability , Purkinje Cells , Spinocerebellar Ataxias/genetics
5.
Hum Mol Genet ; 30(19): 1811-1832, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34077522

ABSTRACT

Episodic ataxia type 2 (EA2) is a rare autosomal dominant disorder characterized by motor incoordination, paroxysmal dystonia, vertigo, nystagmus and more recently cognitive deficits. To date over 100 mutations in the CACNA1A gene have been identified in EA2 patients leading to a loss of P/Q-type channel activity, dysfunction of cerebellar Purkinje cells and motor incoordination. To determine if the cerebellum is contributing to these cognitive deficits, we examined two different EA2 mouse models for cognition impairments where CACNA1A was removed specifically from cerebellar Purkinje or granule cells postnatally. Both mutant mouse models showed anxiolytic behavior to lighted, open areas in the open field and light/dark place preference tests but enhanced anxiousness in the novel suppressed feeding test. However, EA2 mice continued to show augmented latencies in the light/dark preference test and when the arena was divided into two dark zones in the dark/dark preference test. Moreover, increased latencies were also displayed in the novel object recognition test, indicating that EA2 mice are indecisive and anxious to explore new territories and objects and may have memory recognition deficits. Exposure to a foreign mouse led to deficiencies in attention and sniffing as well as in social and genital sniffing. These data suggest that postnatal removal of the P/Q type calcium channel from the cerebellum regulates neuronal activity involved in anxiety, memory, decision making and social interactions. Our EA2 mice will provide a model to identify the mechanisms and therapeutic agents underlying cognitive and psychiatric disorders seen in EA2 patients.


Subject(s)
Nystagmus, Pathologic , Animals , Ataxia/genetics , Cerebellum , Cognition , Humans , Mice , Nystagmus, Pathologic/genetics
6.
Front Neural Circuits ; 13: 51, 2019.
Article in English | MEDLINE | ID: mdl-31447652

ABSTRACT

The cerebellar involvement in cognitive functions such as attention, language, working memory, emotion, goal-directed behavior and spatial navigation is constantly growing. However, an exact connectivity map between the hippocampus and cerebellum in mice is still unknown. Here, we conducted a tracing study to identify the sequence of transsynaptic, cerebellar-hippocampal connections in the mouse brain using combinations of Recombinant adeno-associated virus (rAAV) and pseudotyped deletion-mutant rabies (RABV) viruses. Stereotaxic injection of a primarily anterograde rAAV-WGA (wheat germ agglutinin)-Cre tracer virus in the deep cerebellar nuclei (DCN) of a Cre-dependent tdTomato reporter mouse resulted in strong tdTomato labeling in hippocampal CA1 neurons, retrosplenial cortex (RSC), rhinal cortex (RC) as well as thalamic and cerebellar areas. Whereas hippocampal injections with the retrograde tracer virus rAAV-TTC (tetanus toxin C fragment)-eGFP, displayed eGFP positive cells in the rhinal cortex and subiculum. To determine the sequence of mono-transsynaptic connections between the cerebellum and hippocampus, we used the retrograde tracer RABVΔG-eGFP(EnvA). The tracing revealed a direct connection from the dentate gyrus (DG) in the hippocampus to the RSC, RC and subiculum (S), which are monosynaptically connected to thalamic laterodorsal and ventrolateral areas. These thalamic nuclei are directly connected to cerebellar fastigial (FN), interposed (IntP) and lateral (Lat) nuclei, discovering a new projection route from the fastigial to the laterodorsal thalamic nucleus in the mouse brain. Collectively, our findings suggest a new cerebellar-hippocampal connection via the laterodorsal and ventrolateral thalamus to RSC, RC and S. These results strengthen the notion of the cerebellum's involvement in cognitive functions such as spatial navigation via a polysynaptic circuitry.


Subject(s)
Cerebellar Nuclei/physiology , Hippocampus/physiology , Lateral Thalamic Nuclei/physiology , Nerve Net/physiology , Thalamic Nuclei/physiology , Ventral Thalamic Nuclei/physiology , Animals , Cerebellar Nuclei/chemistry , Female , HEK293 Cells , Hippocampus/chemistry , Humans , Lateral Thalamic Nuclei/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/chemistry , Thalamic Nuclei/chemistry , Ventral Thalamic Nuclei/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...