Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 365(6453): 565-570, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31249136

ABSTRACT

Fast radio bursts (FRBs) are brief radio emissions from distant astronomical sources. Some are known to repeat, but most are single bursts. Nonrepeating FRB observations have had insufficient positional accuracy to localize them to an individual host galaxy. We report the interferometric localization of the single-pulse FRB 180924 to a position 4 kiloparsecs from the center of a luminous galaxy at redshift 0.3214. The burst has not been observed to repeat. The properties of the burst and its host are markedly different from those of the only other accurately localized FRB source. The integrated electron column density along the line of sight closely matches models of the intergalactic medium, indicating that some FRBs are clean probes of the baryonic component of the cosmic web.

2.
Plant Physiol Biochem ; 38(12): 937-47, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11708356

ABSTRACT

We used immunocytochemistry to investigate the effects of gravistimulation on annexin localization in etiolated pea plumule shoots. In longitudinal sections, an asymmetric annexin immunostaining pattern was observed in a defined group of cells located just basipetal to apical meristems at the main shoot apex and at all of the axillary buds, an area classically referred to as the leaf gap. The pattern was observed using both protein-A-purified anti-annexin and affinity-purified anti-annexin antibodies for the immunostaining. A subset of the cells with the annexin staining also showed an unusually high level of periodic acid Schiff (PAS) staining in their cell walls. Prior to gravistimulation, the highest concentration of annexin was oriented toward the direction of gravity along the apical end of these immunostained cells. In contrast, both at 15 and 30 min after gravistimulation, the annexin immunostain became more evenly distributed all around the cell and more distinctly cell peripheral. The asymmetry along the lower wall of these cells was no longer evident. In accord with current models of annexin action, we interpret the results to indicate that annexin-mediated secretion in the leaf gap area is preferentially toward the apical meristem prior to gravistimulation, and that gravistimulation results in a redirection of this secretion. These data are to our knowledge the first to show a correlation between the vector of gravity and the distribution of annexins in the cells of flowering plants.


Subject(s)
Annexins/metabolism , Gravitropism/physiology , Pisum sativum/metabolism , Plant Proteins/metabolism , Plant Shoots/metabolism , Cell Wall/metabolism , Cytoplasm , Gravitation , Immunohistochemistry , Microscopy, Fluorescence , Pisum sativum/cytology , Pisum sativum/growth & development , Periodic Acid-Schiff Reaction , Plant Shoots/cytology , Plant Shoots/growth & development , Plastids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL