Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Cancers (Basel) ; 13(15)2021 Jul 21.
Article En | MEDLINE | ID: mdl-34359559

Assessment of age-dependent cancer risk for carriers of a predicted pathogenic variant (PPV) is often hampered by biases in data collection, with a frequent under-representation of cancer-free PPV carriers. TUMOSPEC was designed to estimate the cumulative risk of cancer for carriers of a PPV in a gene that is usually tested in a hereditary breast and ovarian cancer context. Index cases are enrolled consecutively among patients who undergo genetic testing as part of their care plan in France. First- and second-degree relatives and cousins of PPV carriers are invited to participate whether they are affected by cancer or not, and genotyped for the familial PPV. Clinical, family and epidemiological data are collected, and all data including sequencing data are centralized at the coordinating centre. The three-year feasibility study included 4431 prospective index cases, with 19.1% of them carrying a PPV. When invited by the coordinating centre, 65.3% of the relatives of index cases (5.7 relatives per family, on average) accepted the invitation to participate. The study logistics were well adapted to clinical and laboratory constraints, and collaboration between partners (clinicians, biologists, coordinating centre and participants) was smooth. Hence, TUMOSPEC is being pursued, with the aim of optimizing clinical management guidelines specific to each gene.

2.
Clin Cancer Res ; 26(6): 1497-1506, 2020 03 15.
Article En | MEDLINE | ID: mdl-31796518

PURPOSE: One of the main limitations to anticancer radiotherapy lies in irreversible damage to healthy tissues located within the radiation field. "FLASH" irradiation at very high dose-rate is a new treatment modality that has been reported to specifically spare normal tissue from late radiation-induced toxicity in animal models and therefore could be a promising strategy to reduce treatment toxicity. EXPERIMENTAL DESIGN: Lung responses to FLASH irradiation were investigated by qPCR, single-cell RNA sequencing (sc-RNA-Seq), and histologic methods during the acute wound healing phase as well as at late stages using C57BL/6J wild-type and Terc-/- mice exposed to bilateral thorax irradiation as well as human lung cells grown in vitro. RESULTS: In vitro studies gave evidence of a reduced level of DNA damage and induced lethality at the advantage of FLASH. In mouse lung, sc-RNA-seq and the monitoring of proliferating cells revealed that FLASH minimized the induction of proinflammatory genes and reduced the proliferation of progenitor cells after injury. At late stages, FLASH-irradiated lungs presented less persistent DNA damage and senescent cells than after CONV exposure, suggesting a higher potential for lung regeneration with FLASH. Consistent with this hypothesis, the beneficial effect of FLASH was lost in Terc-/- mice harboring critically short telomeres and lack of telomerase activity. CONCLUSIONS: The results suggest that, compared with conventional radiotherapy, FLASH minimizes DNA damage in normal cells, spares lung progenitor cells from excessive damage, and reduces the risk of replicative senescence.


Cellular Senescence/radiation effects , Lung/radiation effects , RNA/physiology , Single-Cell Analysis/methods , Stem Cells/radiation effects , Telomerase/physiology , Animals , Cell Line, Tumor , Dose-Response Relationship, Radiation , Female , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA-Seq/methods , Stem Cells/metabolism
3.
Anal Biochem ; 523: 50-57, 2017 04 15.
Article En | MEDLINE | ID: mdl-28223165

Metallic nanoparticles have great potential in cancer radiotherapy as theranostic drugs since, they serve simultaneously as contrast agents for medical imaging and as radio-therapy sensitizers. As with other anticancer drugs, intratumoral diffusion is one of the main limiting factors for therapeutic efficiency. To date, a few reports have investigated the intratumoral distribution of metallic nanoparticles. The aim of this study was to determine the quantitative distribution of gadolinium (Gd) nanoparticles after direct intratumoral injection within U87 human glioblastoma tumors grafted in mice, using micro-PIXE (Particle Induced X-ray Emission) imaging. AGuIX (Activation and Guiding of Irradiation by X-ray) 3 nm particles composed of a polysiloxane network surrounded by gadolinium chelates were used. PIXE results indicate that the direct injection of Gd nanoparticles in tumors results in their heterogeneous diffusion, probably related to variations in tumor density. All tumor regions contain Gd, but with markedly different concentrations, with a more than 250-fold difference. Also Gd can diffuse to the healthy adjacent tissue. This study highlights the usefulness of mapping the distribution of metallic nanoparticles at the intratumoral level, and proposes PIXE as an imaging modality to probe the quantitative distribution of metallic nanoparticles in tumors from experimental animal models with micrometer resolution.


Contrast Media/metabolism , Gadolinium/pharmacokinetics , Glioblastoma/metabolism , Heterografts , Image Processing, Computer-Assisted/methods , Nanoparticles/chemistry , Spectrometry, X-Ray Emission/methods , Animals , Female , Glioblastoma/pathology , Humans , Mice , Mice, Nude , Tissue Distribution , Tumor Cells, Cultured
...