Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
N Engl J Med ; 372(12): 1114-25, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25785969

ABSTRACT

BACKGROUND: Pneumococcal polysaccharide conjugate vaccines prevent pneumococcal disease in infants, but their efficacy against pneumococcal community-acquired pneumonia in adults 65 years of age or older is unknown. METHODS: In a randomized, double-blind, placebo-controlled trial involving 84,496 adults 65 years of age or older, we evaluated the efficacy of 13-valent polysaccharide conjugate vaccine (PCV13) in preventing first episodes of vaccine-type strains of pneumococcal community-acquired pneumonia, nonbacteremic and noninvasive pneumococcal community-acquired pneumonia, and invasive pneumococcal disease. Standard laboratory methods and a serotype-specific urinary antigen detection assay were used to identify community-acquired pneumonia and invasive pneumococcal disease. RESULTS: In the per-protocol analysis of first episodes of infections due to vaccine-type strains, community-acquired pneumonia occurred in 49 persons in the PCV13 group and 90 persons in the placebo group (vaccine efficacy, 45.6%; 95.2% confidence interval [CI], 21.8 to 62.5), nonbacteremic and noninvasive community-acquired pneumonia occurred in 33 persons in the PCV13 group and 60 persons in the placebo group (vaccine efficacy, 45.0%; 95.2% CI, 14.2 to 65.3), and invasive pneumococcal disease occurred in 7 persons in the PCV13 group and 28 persons in the placebo group (vaccine efficacy, 75.0%; 95% CI, 41.4 to 90.8). Efficacy persisted throughout the trial (mean follow-up, 3.97 years). In the modified intention-to-treat analysis, similar efficacy was observed (vaccine efficacy, 37.7%, 41.1%, and 75.8%, respectively), and community-acquired pneumonia occurred in 747 persons in the PCV13 group and 787 persons in placebo group (vaccine efficacy, 5.1%; 95% CI, -5.1 to 14.2). Numbers of serious adverse events and deaths were similar in the two groups, but there were more local reactions in the PCV13 group. CONCLUSIONS: Among older adults, PCV13 was effective in preventing vaccine-type pneumococcal, bacteremic, and nonbacteremic community-acquired pneumonia and vaccine-type invasive pneumococcal disease but not in preventing community-acquired pneumonia from any cause. (Funded by Pfizer; CAPITA ClinicalTrials.gov number NCT00744263.).


Subject(s)
Pneumococcal Vaccines , Pneumonia, Pneumococcal/prevention & control , Aged , Aged, 80 and over , Community-Acquired Infections/prevention & control , Double-Blind Method , Female , Humans , Male , Pneumonia/prevention & control , Pneumonia, Pneumococcal/epidemiology , Vaccines, Conjugate
2.
Emerg Infect Dis ; 11(6): 821-8, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15963275

ABSTRACT

Vancomycin-resistant enterococci (VRE) have caused hospital outbreaks worldwide, and the vancomycin-resistance gene (vanA) has crossed genus boundaries to methicillin-resistant Staphylococcus aureus. Spread of VRE, therefore, represents an immediate threat for patient care and creates a reservoir of mobile resistance genes for other, more virulent pathogens. Evolutionary genetics, population structure, and geographic distribution of 411 VRE and vancomycin-susceptible Enterococcus faecium isolates, recovered from human and nonhuman sources and community and hospital reservoirs in 5 continents, identified a genetic lineage of E. faecium (complex-17) that has spread globally. This lineage is characterized by 1) ampicillin resistance, 2) a pathogenicity island, and 3) an association with hospital outbreaks. Complex-17 is an example of cumulative evolutionary processes that improved the relative fitness of bacteria in hospital environments. Preventing further spread of this epidemic E. faecium subpopulation is critical, and efforts should focus on the early disclosure of ampicillin-resistant complex-17 strains.


Subject(s)
Cross Infection/transmission , Enterococcus faecium/drug effects , Gram-Positive Bacterial Infections/transmission , Vancomycin Resistance , Africa/epidemiology , Animals , Australia/epidemiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cats , Cattle , Cross Infection/epidemiology , Cross Infection/microbiology , Dogs , Enterococcus faecium/classification , Enterococcus faecium/genetics , Enterococcus faecium/pathogenicity , Europe/epidemiology , Evolution, Molecular , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Humans , North America/epidemiology , Penicillin Resistance , Recombination, Genetic , South America/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL