Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Genet Mol Res ; 16(2)2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28671246

ABSTRACT

In this study, we estimated the genetic parameters and identified the putative quantitative trait loci (QTL) associated with the length of productive life (LPL), days open (DO), and 305-day milk yield for the first lactation (FM305) of crossbred Holstein dairy cattle. Data comprising 4,739 records collected between 1986 and 2004 were used to estimate the variance-covariance components using the multiple-trait animal linear mixed models based on the average information restricted maximum likelihood (AI-REML) algorithm. Thirty-six animals were genotyped using the Illumina BovineSNP50 Bead Chip [>50,000 single nucleotide polymorphisms (SNPs)] to identify the putative QTL in a genome-wide association study. The heritability of the production trait FM305 was 0.25 and that of the functional traits, LPL and DO, was low (0.10 and 0.06, respectively). The genetic correlation estimates demonstrated favorable negative correlations between LPL and DO (-0.02). However, we observed a favorable positive correlation between FM305 and LPL (0.43) and an unfavorable positive correlation between FM305 and DO (0.1). The GWAS results indicated that 23 QTLs on bovine chromosomes 1, 4, 5, 8, 15, 26, and X were associated with the traits of interest, and the putative QTL regions were identified within seven genes (SYT1, DOCK11, KLHL13, IL13RA1, PRKG1, GNA14, and LRRC4C). In conclusion, the heritability estimates of the LPL and DO were low. Therefore, the approach of multiple-trait selection indexes should be applied, and the QTL identified here should be considered for use in marker-assisted selection in the future.


Subject(s)
Cattle/genetics , Lactation/genetics , Quantitative Trait Loci , Animals , Female , Genome-Wide Association Study , Genotype , Longevity/genetics , Milk , Quantitative Trait, Heritable , Reproduction/genetics , Selective Breeding
2.
Rev. bras. ciênc. avic ; 19(1): 7-18, jan.-mar. 2017. graf, ilus, tab
Article in English | VETINDEX | ID: biblio-1490373

ABSTRACT

Heat tolerance in poultry production was obtained attention due to the need for genetic lines that can withstand climate changes. This study aimed at investigating heat tolerance in commercial and native broiler genetics, as well as the physiological and growth performance responses of HSP70 genotypes submitted to heat stress. In Experiment I, heterophil:lymphocyte (H:L) ratio, as an indicator of heat tolerance, was compared between commercial broilers (n = 100) and Thai native chickens (n = 100). Growing chickens (with similar initial weight) of each genetic strain were randomly divided into two groups: 1) thermoneutral environment (26 oC ± 2 oC) and 2) heat stress (36 oC ± 2 oC). The results showed that native chickens originating from a tropical environment presented lower H:L ratio and mortality rate compared with commercial broilers. In Experiment II, HSP70 genotypes were compared. PCR-RFLP was applied to identify the genotypes (C1C1, n = 38; C1C2, n = 38; and C2C2, n = 28). Ten-week-old chickens of each genotype were evaluated in the same environments described in Experiment I. Heat-stress indicators - respiratory rate (RR), cloacal temperature (CT), packed cell volume (PCV), and average daily gain (ADG) - were measured for three weeks. The significant difference in PCV indicated that C2C2 chickens were less tolerant to heat stress compared to other genotypes. The RR, CT, and ADG were not significantly different among all genotypes. Since the C2C2 genotype was shown to be sensitive to heat stress, C1C1 and C1C2 could be used as markers for heat-tolerant genetic strains of Thai indigenous chickens and hybrid commercial lines.


Subject(s)
Animals , Thermal Diffusion , Chickens/abnormalities , Chickens/growth & development , Heat Stress Disorders/diagnosis , Heat Stress Disorders/veterinary
3.
R. bras. Ci. avíc. ; 19(1): 7-18, jan.-mar. 2017. graf, ilus, tab
Article in English | VETINDEX | ID: vti-688279

ABSTRACT

Heat tolerance in poultry production was obtained attention due to the need for genetic lines that can withstand climate changes. This study aimed at investigating heat tolerance in commercial and native broiler genetics, as well as the physiological and growth performance responses of HSP70 genotypes submitted to heat stress. In Experiment I, heterophil:lymphocyte (H:L) ratio, as an indicator of heat tolerance, was compared between commercial broilers (n = 100) and Thai native chickens (n = 100). Growing chickens (with similar initial weight) of each genetic strain were randomly divided into two groups: 1) thermoneutral environment (26 oC ± 2 oC) and 2) heat stress (36 oC ± 2 oC). The results showed that native chickens originating from a tropical environment presented lower H:L ratio and mortality rate compared with commercial broilers. In Experiment II, HSP70 genotypes were compared. PCR-RFLP was applied to identify the genotypes (C1C1, n = 38; C1C2, n = 38; and C2C2, n = 28). Ten-week-old chickens of each genotype were evaluated in the same environments described in Experiment I. Heat-stress indicators - respiratory rate (RR), cloacal temperature (CT), packed cell volume (PCV), and average daily gain (ADG) - were measured for three weeks. The significant difference in PCV indicated that C2C2 chickens were less tolerant to heat stress compared to other genotypes. The RR, CT, and ADG were not significantly different among all genotypes. Since the C2C2 genotype was shown to be sensitive to heat stress, C1C1 and C1C2 could be used as markers for heat-tolerant genetic strains of Thai indigenous chickens and hybrid commercial lines.(AU)


Subject(s)
Animals , Chickens/abnormalities , Chickens/growth & development , Thermal Diffusion , Heat Stress Disorders/diagnosis , Heat Stress Disorders/veterinary
4.
Genet Mol Res ; 12(4): 4332-41, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23546986

ABSTRACT

Four Thai synthetic chicken lines (Kaen Thong, Khai Mook Esarn, Soi Nin, and Soi Pet) originated from Thai native and exotic commercial chickens were evaluated for their growth and carcass traits with the purpose of developing a Thai broiler breeding program. Insulin-like growth factor I (IGF-I) gene is known to play an important role in growth, proliferation and differentiation. Consequently, we investigated the possibility of using the IGF-I gene for marker-assisted selection in Thai synthetic chickens. We looked for variations in the IGF-I gene and studied their association with growth and carcass traits; 1046 chickens were genotyped using PCR-RFLP methods. A general linear model was used to analyze associations of the IGF-I polymorphism with growth and carcass traits. Kaen Thong, Khai Mook Esarn, and Soi Nin chickens were found to carry similar frequencies of alleles A and C (0.40-0.60), while Soi Pet chickens had high frequencies of allele C (0.75). The IGF-I gene was significantly associated with some growth traits (body weight at hatching, and at 4, 8, 12, and 14 weeks of age; average daily gain during 0-12 and 0-14 weeks of age) in all synthetic chickens. Carcass traits (the percentage of dressing and pectoralis major) were significantly different only in Khai Mook Esarn chickens. We conclude that IGF-I can be used as a marker gene for the selection of growth and carcass traits of synthetic chickens in a marker-assisted selection program.


Subject(s)
Chickens/genetics , Insulin-Like Growth Factor I/genetics , Polymorphism, Single Nucleotide , Animals , Body Weight/genetics , Breeding , Chickens/growth & development , Female , Gene Frequency , Genetic Association Studies , Male , Polymorphism, Restriction Fragment Length
SELECTION OF CITATIONS
SEARCH DETAIL